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Abstract

We consider the prescribed mean curvature problem of spacelike graphs in
Robertson-Walker spacetimes of flat fiber with homogeneous Dirichlet conditions
on an Kuclidean ball. Under reasonable assumptions, it is shown that every
possible solution must be radially symmetric. Besides, an existence result for a
singular nonlinear equation is proved by making use of the classical Schauder fixed
point Theorem. The results are applied to realistic examples of Robertson-Walker
spacetimes.

2010 Mathematics Subject Classification. 35J93, 35J25, 53B30.

*The first and third authors are partially supported by Spanish MICINN Grant with FEDER
funds MTM2011-23652. The second author by Spanish MICINN Grant with FEDER funds
MTM2010-18099 and by the Junta de Andalucia Regional Grant P09-FQM-4496.



2 D. de la Fuente, A. Romero and P.J. Torres

Key words. Dirichlet boundary problem, prescribed mean curvature function, Robertson-Walker space-

time, singular nonlinear equation

1 Introduction

Let B(R) be the Euclidean ball, centered at 0 € R™ with radius R. Let I C R be
an open interval with 0 € I, and let f € C°°(I) be a positive function. For a given
smooth radially symmetric function H : I x B(R) — R, we study in this paper the
existence of positive, radial solutions of the following quasilinear elliptic problem

. Vu £(u) Va2 .
div n =n in ,
(f(U) f(u>2—|w|2>+ f(u)Q—VuP( +f(u)?) H in B(R)

[Vu| < f(u), (1.

u=0 in OB(R).

The approach to this PDE is motivated by Lorentzian Geometry, specifically by
the problem of the mean curvature prescription. Explicitly, every solution of (1.1)
defines a spacelike graph on a ball of the fiber of the Robertson-Walker spacetime,
M =1 x;R" (see Section 2) where the function H prescribes the mean curvature.

In the same way as in Riemannian Geometry, constant mean curvature space-
like hypersurfaces in Lorentzian manifolds are characterized as critical points of
the functional ‘area’; under certain ‘volume constraints’ [6], [11]. This situation
is a particular case of our mean curvature prescription problem (see [10, 7] and
the references therein). However, the interest of this problem is not only geomet-
ric. Namely, spacelike hypersurfaces with constant mean curvature in spacetimes
have special importance in Physics. These are used as initial condition for solv-
ing Einstein’s equations, because they acquire a more pleasant appearance (see,
for example, [9]). Other relevant results about foliations of the spacetime through
constant mean curvature hypersurfaces are given in [9], [18]. Specially relevant is
the study of spacelike hypersurfaces in Robertson-Walker spacetimes modelling rel-
ativistic universes, where matter and energy evolute as a perfect fluid (see [19, 21]
for more information).

Moreover, the sign of the mean curvature operator has a physical meaning.
A spacelike hypersurface has associated a family of instantaneous observers, the
future-pointing timelike unit normal vectors, i.e., the normal observers. The mean
curvature measures, intuitively, how normal observers get away with respect to the
next one, when it is averaged in all spacial directions. The result in this paper may
be contemplated then as prescribing locally the behaviour of normal instantaneous
observers.

In the latter years, many researchers have worked on the prescribed mean cur-
vature problem in the Riemannian ambient (specially in the Euclidean space). In
the Lorentzian ambient, the efforts have mainly focused in the Lorentz-Minkowski
spacetime. In this context, it is remarkable the celebrated paper of Barnitk and
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Simon [2], where a kind of “universal existence result” is proved for the Dirichlet
problem. More recently, the interest is focused on the existence of positive solu-
tions, by using a combination of variational techniques, critical point theory, sub-
supersolutions and topological degree (see for instance [3, 4, 5, 12, 13, 14] and the
references therein). Up to our knowledge, the problem of the existence of prescribed
mean curvature graphs for Robertson-Walker spacetimes has not been considered
before. In this context, the uniqueness problem for constant mean curvature has
been studied in more depth (see for instance [1, 8]).

The main aim of this article is to use an approach based on the Schauder fixed
point Theorem (see for instance [15]) to deal with the the existence problem. It
should be noted that our results do not follow directly from the obtained ones
previously when M is Minkowski spacetime ([3] and references therein). In fact,
we will deal here with an equation with an extra singular term with respect to
the considered in Minkowski spacetime. Besides, we give conditions only on the
prescription function (not on the warping function) which ensure a priori radial
symmetry of all the (possible) positive solutions of the equation (3.2). In other
words, we will prove that the symmetry of the base domain ‘spreads to solutions’.
To carry out this aim, we will take advantage of the results obtained in 1979 by B.
Gidas, W. Ni and L. Nirenberg in [16] about symmetry of the solutions of certain
nonlinear differential equations. The method used by the three authors had yet been
invented by Alexandroff almost thirty years before, when he proved successfully that
the round spheres are the only connected, compact hypersurfaces embedded in the
Euclidean space with constant mean curvature. Indeed, currently this technique is
known as ‘Alexandroff’s reflection method’” and its use is very extended in the field
of the elliptic PDE’s and Geometric Analysis. In our case, we are able to use a
truncature argument exposed in [12] and apply directly the results of [16].

The structure of this paper is as follows. Section 2 and 3 are devoted to provide
some preliminaries and fix the precise set up of the problem. Section 4 is devoted to
study the radial symmetry of the possible solutions of (1.1) under suitable assump-
tions on the prescribed mean curvature function. Thus, we arrive that any positive
solution of (1.1) must be radially symmetric (Theorem 4.1). By using the classi-
cal Schauder fixed point Theorem, a general existence result is proved in Section 5
(Theorem 5.5).

The main findings of this paper can be summarized as follows.

Theorem 1.1 Let I x; R™ be a Robertson-Walker spacetime, and let B = By(R)
be the Fuclidean ball with radius R centred at 0 € R™. Assume I;r (R) C I, where

If(R) =

—/O f(w‘l(S))d&/ORf(w‘l(S))dS],

-R

and suppose that the following inequality holds

1

/ PR—
|f|<R-

max
R+ f‘l]f (R)
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For each radially symmetric smooth function H : I x B — R such that

H(t,r) < J;(t) and  f'(t) >0, forany 7 €l0,R[ , telf(R),

there exists a spacelike graph with mean curvature function H defined on B, sup-
ported on the slice t = 0 and only touching it on the boundary {0} x 0B, and
forming a non-zero hyperbolic angle with 0;. Moreover, if H is increasing in the
second variable, such a spacelike graph must be radially symmetric.

It should be pointed out that the assumptions in this result have a reasonable
physical interpretation. In fact, the inequality f/(t) > 0 means that the divergence
in the spacetime I x; R™ of the reference frame 0; is nonnegative, which indicates
that the comoving observers are on average spreading apart [21, p.121] and therefore,
for these observers, the universe is really expanding whenever f/(t) > 0. On the
other hand, the inequality H(t,r) < (f'/f)(t) expresses an above control of the
prescription function by the Hubble function f’/f of the spacetime I x ¢ R".

Note that previous inequality is not a comparison assumption between extrinsic
quantities of two spacelike hypersurfaces of M (the right member corresponds to
a spacelike slice which changes when changes the point at the graph). This kind
of inequality has been used to characterize some spacelike slices of certain I x ; R™
when n = 2 [20].

Moreover, the family of Robertson-Walker spacetimes where the result applies
is very wide, and contains relevant relativistic spacetimes. Indeed, it includes the
Lorentz-Minkowski spacetime (f = 1, I = R), the Einstein-De Sitter spacetime
(I =] — to,+oo[, f(t) = (t+t9)?/3, with ty > 0), and the steady state spacetime
(I =R, f(t) = e'), which is an open subset of the De Sitter spacetime.

2 Preliminaries

First of all, we are going to introduce the ambient spacetimes where our spacelike
graphs are embedded. We consider the Euclidean space (R™,(, }) , and let I C R
be a open interval in R with the metric —dt2. Throughout this paper we will denote
by (M, g) the (n+ 1)-dimensional product manifold I x R endowed the Lorentzian
metric

g =i (=dt?) + fAr)mh((,)) = =2 + 20, ), (2.1)

where f > 0 is a smooth function on I, and 7y and 7 denote the projections onto
I and R™ respectively. Thus, (M, g) is a Lorentzian warped product with base, I
fiber R™ and warping function f, and we will denote it by I x; M. We will refer
M as a Robertson-Walker (RW) spacetime.

Given an n-dimensional manifold S, an immersion ¢ : S — M is said to be
spacelike if the Lorentzian metric given by (2.1) induces, via ¢, a Riemannian
metric g5 on S. In this case, S is called a spacelike hypersurface.

Observe that the vector field 9; := 9/0t € X(M) is timelike and unit which
determines a time-orientation on M. Thus, if ¢ : S — M is a (connected) spacelike
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hypersurface in M, the time-orientability of M allows us to define N € X*(S) as
the only globally defined, unit timelike vector field normal to S in the same time-
orientation of 0.

There is a remarkable family of spacelike hypersurfaces in the RW spacetime
M. Namely, the level hypersurfaces of projection function ¢t. They are also called
spacelike slices. Each spacelike slice t = ty is umbilical and its mean curvature is
F(t6)/ f(t,)-

Among the spacelike hypersurfaces, the spacelike graphs on domains of the fiber
R™ appear in a natural way. We will denote by X, the graph defined from u €
C*(U) such that uw(U) C I, i.e., ¥, = {(x,u(z)) : « € U}. The spacelike condition
is expressed as follows

[Vu| < f(u) in U. (2.2)

For a spacelike graph 3,,, the unit timelike normal vector field in the same time
orientation of 0, it is given by

() Lo
N = %f(u) — |V’LL|2 (fz(u)v +at) )

The corresponding mean curvature associated to N, is defined by

. v @ (I
‘ (f(U) flu)? = |VUI2> i V()2 —|Vul? ( - f(U)2> ’

which can be seen as a quasilinear elliptic operator @, because of (2.2). Hence, our
prescription problem is translated into the equation

Q(u)(a) = nH (u,x). (2.3)

3 Set up

Note that @ is a quasilinear elliptic operator defined only on smooth functions which
satisfy (2.2). In order to face our problem, the first step is to perform a suitable
variable change in (2.3) to make it easier. Indeed, consider

b ds
v = (u), where o(t) = )

Clearly, ¢ is a diffeomorphism from I to another open interval J in R. Consequently,

1
it follows that Vo = mVu. Therefore, |Vu| < f(u) holds if and only if |Vv| < 1.

It is clear that w is radially symmetric if and only if v is also radially symmetric.
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Taking into account

_ 1 div( Vo ) n <V 1 Vo >
f(w) 1—[Vo]? f(u)” /1= |Vo]?

_ 1 d1v< Vo ) B <f’(u) " Vo
f(u) 1—[Vo? fw)? "7 /1= ]Vu|]?

_ ! div( v >_ W gyp
f(u) L=[Vu2)  flu)y/1=[Vo

our equation is transformed in

=nfle ' (W) H(P (v),2).  (3.1)

Q(v) := div ( Vv > n nf'(¢~"(v))

VI—VR) 1o VP

Actually, the previous variable change is equivalent to consider the following con-
formal map

oxId:Ix;R" — (J x R", —ds? + g)
t.p) +—  (e(t),p),

1
which has conformal factor ——. The Lorentzian product spacetime is in fact an

ft)
open subset of Lorentz-Minkowski L1, In L™*!, the mean curvature function of
the spacelike graph by v is

1 di Vv
—div | —— | .
n V1—1|Vol|?
From now on, we will deal with equation (3.1). Next we fix some notation. We

take a polar coordinate system centered at 0 € B(R) and write the Euclidean metric
as usual as

dr? + r2de?,

where d?© is the canonical metric of the unit sphere (n—1)-dimensional. In addition,
H : I x B(R) — R will be a radially symmetric smooth function. In this work,
we are interested in spacelike graphs defined on a closed ball of the fiber, whose
boundary is supported on the slice ¢ = 0. In other words, the function v, which
define the graph, is strictly positive in the open ball, and it is zero at the boundary.

Therefore, the problem is reduced to deal with the existence of a positive solu-
tions of the following elliptic quasilinear differential equation
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. Vv nf (p=1(v)) . . .
div =nH v),|T v in B(R
( 1— |Vv|2> + 1— Vo2 (e (v), [z) fe™ " (v)) (R)

Vol < 1, (3.2)
v=0 in JB(R).

4 A priori radial symmetry of positive solutions

The aim of this section is to provide sufficient conditions on the prescription function
to ensure that any eventual positive solution of (3.2) must be radially symmetric.
In fact, we can state the following result.

Theorem 4.1 Let I x;R™ be a RW spacetime, and let B = By(R) be the Fuclidean
ball with radius R centred at 0 € R™.. For each smooth radially symmetric function
H:1x[0,R] = R, H= H(t,r), radially increasing in the second variable and

which satisfies H(0,r) < ];/(((?))

radially symmetric. Moreover,

in OB, any positive solution v of equation (3.2) is

a

< 0 holds in 0B.
or

Remark 4.2 Geometrically, the last assertion means that the hyperbolic angle be-
tween the unit normal vector field N and 0y is nowhere zero at the points of the
graph corresponding to {0} x OB.

In order to use the Strong Maximum Principle (see for instance [17]) to derive a
suitable Alexandroff reflection method, it is required that the involved differential
operator is defined on C?(B(R)), and it must be uniformly elliptic. To this aim,
we apply to our operator (3.1) a truncature argument first used in [12] for the
Lorentz-Minskowski operator.

First of all, we rewrite our operator Q as

Q(v) = div (h(|Vv[*)Vv) + nh(|Vo*) /(07" (v),

1
Vs

Fix v € C?*(B(R)) a positive solution of (3.2), and let m := maxgg)|Vo| < 1.
We define the truncated function A,

where h(s) :=

h(s) if  s<m?
h(s) =< a(s) if m?<s<1,
c if s>1

)

where the function @ : R — R and the constant ¢ are such that h € C®(R) is
increasing and positive. Observe that both h and 7 are bounded on all R. We
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introduce a new operator, denoted by Q,, as follows,
w— Qy(w) = div(h(|Vw|*) Vw) + nh(w) f' (¢~ (w)), (4.1)

where w € C?(B(R)). Note that Q,(w) = Q(w) whenever |Vw| < |Vol. It is not
difficult to compute the principal symbol of Q,, (see [17, chap. 1]) and to prove that
Q, is uniformly elliptic.

Now the Strong Maximum Principle may be applied to 9, and then, the proof
of Theorem 4.1 follows from [16, Cor. 1].

5 Existence result

We have proved in Section 4 that under some conditions every eventual positive
solution v of problem (3.2) must be radially symmetric. The purpose of this section
is provide sufficient conditions for the existence of such radially symmetric solutions.
Passing to polar coordinates, the equation is reduced to the following ODE with
mixed boundary conditions

(o) + LD o ) e ),

] <1 in (0,R), (5.1)
v'(0) =0 =wv(R),

Tnfl

S
We fix some notation which will be used in the rest of the section. Let C' be
the Banach space of the real continuous functions in [0, R], with the maximum
norm, and C'! the space of continuously differentiable functions with its usual norm
[oll = [vllos + [[v'llcc- We write By = {v € C*: |[v]lec < ps [[V']lo0 <7}
Our first step is to associate a fized point operator N to problem (5.1). We start
by defining

where ¢(s) :=

S:C — C*,

S = s [ € h0d (€ O.R). S@0O) =0

K:co'— ot

K()(r) = / * e,
An easy checking shows that, for each h € TC, the mixed problem
(r”_1¢(v’))/ +r"th=0, ' (0)=wv(R)=0,
has a unique solution given by

v=Kog¢ loS(h).
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Now, we consider the Nemytskii operator
Np:Ba1 CC'— C, Np(v)=F(,v,v),
where F': [0, R] x o(I) x (=1,1) = R is given by
n(f" o™ h)(s)
e

Obviously, Np is continuous and Np(B, ) is a bounded subset of C' for all p > 0
and 0 <y < 1. Moreover, from the compactness of K we deduce the compactness
of Kog7loS:C— C'in B, forall p>0 and 0 <~ < 1. In this way, solving
the problem (5.1) is equivalent to find the fixed points of AV.

F(r,s,t) = —nH(p™(s),r) f(¢™" () +

Lemma 5.1 A function v € C* is a solution of equation (5.1) if and only if v is a
fixed point of the nonlinear compact operator

./V:BPWCCl—>Cl, N=Kog¢'oSoNg. (5.2)

Remark 5.2 Note that the image of the opemtor./v is contained in C2[0, R], so the
fized points (solutions of the equation (5.1)) will be of class C%. Moreover, using the
regularity theorem for elliptic nonlinear operators, (see [17, Chapter 4]) we conclude
that, if the prescription function H is of class C*°, then the solutions will also be
infinitely derivable.

Note that fixed points of N always verify the restrictions v/(0) = v(R) = 0.
Therefore, we will consider the Banach subspace of C'! which satisfy these boundary
conditions. Our aim is to search a suitable subset to apply the Schauder point fixed
theorem. Let us define the set

B(y)={v € Bg,: v'(0)=0=uv(R)}.

Since the graph associated to v is spacelike, i.e., ||[v']lc < 1, we deduce that
lv]|oo < R. So, the image of v is in [~ R, R] or, equivalently, the image of u = ¢~ (v)
is contained in ¢~!([~R, R]). Hence, this observation gives us a height bound of
the spacelike graphs. In order to restrict the operator N to B(~), we impose the
first assumption on the interval I in our RW spacetime

(A1) [FRR C o) e, T(R) = [~ [0 f(e7 (9)ds , J) Fo~(s))ds] €
I.

Basically, (A1) says that the interval I must be sufficiently big to contain the highest
or lowest possible spacelike graph.

Now, the compact operator N restricted to B(v) will be denoted by N : B(y) —
C'. Tt is possible write it explicitly as follows

R s
N = [Co [ [ peaar] as
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By using that ¢~ 1(R) = (—1,1), one gets
IN ()]s < R forall veB(y). (5.3)
On the other hand, deriving N (v)

1 S
N @) = =07 | [ 7 Ftar]
Then, taking into account that ¢ is an odd and increasing homeomorphism, we have

-1

gx noos
! < P L S R _
[NV ()]l < max (h + W) gt I d71>
g* (5-4)
_ —1 *
- ¢ h + 1_72 R )

for every v € B(7), where we have defined
h* = max{|H(T790_1(‘9))]0(90_1(3)” tre [O,R], s € [_R7 R]}7
9" = max{|(f op~")(s)|: s €[-R, R}

At this point, the second assumption on the warping function f is imposed.
(A2) The absolute value of the expansion, f’, along the temporal interval Iy(R) is

1 than —.

ower than —

—1\/
1

This is equivalent to say that |(f' o ¢™1)(s)| = |(ffz<f;_1)(5)| <& for all s €

[-R, R], or more simply g* < +. Using this hypothesis, we can take a y € (0,1)
sufficiently close to 1 such that

R |h* +

Introducing this inequality in (5.4),
IV (@)l <.

This last inequality, together with (5.3), implies that N'(B(v)) C B(v). Since B(7) is
contractible to a point, and A is a continuous and compact operator, the Schauder
Point Fixed theorem applies, leading to the following result.

Proposition 5.3 Assume (Al) and (A2). Then, problem (3.2) has at least one
radially symmetric solution.

Note that the solution given in previous result is not necessarily positive. To
assure the positivity of the solutions we need an additional condition.
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Proposition 5.4 Assume that

(A3) H(t,r) gj}l(t) and f'(t)>0 forall re€[0,R] and t € I;(R).

Then, any v not identically zero solution of (5.1) verifies v > 0 on [0, R).

Proof. First, note that condition (A3) implies that F' is nonnegative in [0, R] x
[-R, R] x [0,7]. From the equality

n

V(r)=—¢7! [rnl /OT "R (r,v,0")dr | (5.5)

and taking into account that ¢ is an odd increasing diffeomorphism, we deduce
that v is decreasing. Since v(R) = 0, we have v > 0 on [0, R]. v is a solution
!/

identically zero if and only if H(0,r) = f7(0) for all » € [0,R]. If v does not

vanished identically, then v(0) > 0 and there exists ro € (0, R) where v'(rg) < 0.
Then, from (5.5) we get

ro
/ " (1, 0,0 )dr > 0.
0
Since F(7,v,v") > 0 for all 7 € [0, R], this implies
T
/ " F(T,0,0)dr >0 for all r > r.
0

From (5.5), we get v'(r) < 0 on [rg, R] and therefore, we conclude that v > 0 on
[0, R). O
Summarizing in a more geometric perspective, we can state the following result.

Theorem 5.5 Let I xy R™ be a Robertson-Walker spacetime and B = B(R) the
FEuclidean ball centred in 0 € R™ with radius R. Assume that I5(R) C I, where

—/0 F(e™(9))ds, /ORf(wl(S))dS]-

-R

It(R) =

Let H : I x B — R be a smooth radially symmetric function. Suppose that the
following inequality holds

max [/ <

X —.

I7(R) R
Then, there exists at least one spacelike graph defined on B with mean curvature
function H, supported on the slice {t = 0}. Moreover, if

!/
H(t,r) < fT(t) and f'(t)>0  forall r€0,R] and t € I;(R).

then the graph is either a slice or is above of {t = 0} and only touches it on the
boundary {0} x 0B.
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As a final remark, observe that in the previous result, if (A3) is assumed from
the beginning, every eventual solution is a priori positive, therefore condition (A2)

can be weakened to RT N I;(R) = [0 , fOR f(ap_l(s))ds] Thus, Theorem 1.1 is a
direct consequence of Theorems 4.1 and 5.5.
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