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Universitat Autònoma de Barcelona, Barcelona, Spain

{cima,gasull,manyosas}@mat.uab.cat

?Departamento de Matemática Aplicada,
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1 Introduction and statement of the main result

A map F : Rn → Rn is called m-periodic if Fm = Id, where Fm = F ◦Fm−1, and m is the smallest
positive natural number with this property. When m = 2 then it is said that F is an involution.

When there exists a Ck-diffeomorphism ψ : Rn → Rn, such that ψ ◦ F ◦ ψ−1 is a linear map
then it is said that F is Ck-linearizable. In this case, the map ψ is called a linearization of F .
This property is very important because it is not difficult to describe the dynamics of the discrete
dynamical system generated by linearizable maps. For instance, planar m-periodic linearizable
maps behave as planar m-periodic linear maps: they are either symmetries with respect to a
“line” or “rotations”.

There is a strong relationship between periodic maps and linearizable maps. For instance, it
is well-known that when n = 1 every Ck periodic map is either the identity, or it is 2-periodic and
Ck-conjugated to the involution − Id, see for instance [8]. When n = 2 the following result holds,
see [4] for a simple and nice proof.

Theorem 1.1. (Kerékjártó Theorem) Let F : R2 → R2 be a continuous m-periodic map. Then F
is C0-linearizable.

The situation changes for n ≥ 3. In [1, 2], Bing shows that for any m ≥ 2 there are continuous
m-periodic maps in R3 which are not linearizable. Nevertheless, Montgomery and Bochner give a
positive local result proving that for Ck, k ≥ 1, m-periodic maps having a fixed point are always
locally Ck-linearizable in a neighborhood of this point, see [9] or Theorem 3.1 below. In any case,
in [3, 5, 7] it is shown that for n ≥ 7 there are continuous and also differentiable periodic maps on
Rn without fixed points.
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The aim of this paper is to prove the following improvement for planar involutions of the result
of Kerékjártó.

Theorem A. Let F : R2 → R2 be a C1-differentiable involution. Then F is C1-linearizable.

As we will see, our proof uses classical ideas of differential topology together with some ad hoc
tricks for extending and gluing non-global diffeomorphisms. The authors thank Professor Sánchez
Gabites for suggesting the use of the classification theorem of surfaces for the proof of Lemma 2.5.

2 Preliminary results on differential topology

In this paper, unless it is explicitly stated, a differentiable map will mean a map of class C1. Also
a diffeomorphism will be a C1- diffeomorphism.

2.1 Results in dimension n

We state two results that we will use afterwards when n = 2. The first one asserts that any local
diffeomorphism can be extended to be a global diffeomorphism, see [10].

Theorem 2.1. Let M be a differentiable manifold and let g : V → g(V ) ⊂M be a diffeomorphism
defined on a neighborhood V of a point p ∈ M. Then there exists a diffeomorphism f : M → M
such that f |W = g|W for some neighborhood W ⊂ V of p.

The second one is given in [6] for C∞- manifolds. Here we state a slightly modified version of
the theorem for C1-manifolds. We leave the details of this generalization to the reader. Notice that
it allows to glue diffeomorphisms that match as a global homeomorphism, only changing them in
a neighborhood of the gluing set, but not on the gluing set itself.

Theorem 2.2. For each i = 0, 1, let Wi be an n-dimensional C1-manifold without boundary which
is the union of two closed n-dimensional submanifolds Mi, Ni such that

Mi ∩Ni = ∂Mi = ∂Ni = Vi.

Let f : W0 →W1 be a homeomorphism which maps M0 and N0 diffeomorphically onto M1 and N1

respectively. Then there is a diffeomorphism f̃ : W0 →W1 such that f(M0) = M1, f(N0) = N1 and
f̃ |V0 = f |V0 . Moreover f̃ can be chosen such that it coincides with f outside a given neighborhood
Q of V0.

2.2 Results in the plane

The aim of this subsection is to prove the following local result, that will play a key role in our
proof of Theorem A.

Lemma 2.3. Let D ⊂ R2 be an open and simply connected set such that {0} × R ⊂ D. Then
there exist a open set V such that {0} × R ⊂ V ⊂ D and a diffeomorphism ψ : D → R2 such that
ψ|V = Id .
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To prove Lemma 2.3 we introduce two more results. The first one is a direct corollary of the
natural generalization for non-compact C1-surfaces of the theorem of classification of C∞-compact
surfaces given in [6].

Theorem 2.4. Let M be a simply connected and non-compact C1- surface such that ∂M is con-
nected and non-empty. Then M is diffeomorphic to H = {(x, y) ∈ R2 : x ≥ 1}.

The second result is a lemma that allows to transform by a diffeomorphism any C1-curve “going
from infinity to infinity” into a straight line.

Lemma 2.5. Let C be a closed, connected and non-compact C1-submanifold of R2. Then there
exists a diffeomorphism ϕ : R2 → R2 such that ϕ(C) = {0} × R.

Proof. First of all note that R2 \ C has two connected components that we will denote by C+

and C−. Denote also by C1 and C2 the simply connected and non compact differentiable sur-
faces obtained by adding C to C+ and C−. Applying Theorem 2.4 to C1 and C2 we obtain
diffeomorphisms φ1 : C1 −→ H1 and φ2 : C2 −→ H2 where H1 = {(x, y) ∈ R2 : x ≥ 0} and
H2 = {(x, y) ∈ R2 : x ≤ 0}. Clearly the map φ2 ◦ φ−1

1 is a diffeomorphism of {0} × R into it-
self. Thus (φ2 ◦ φ−1

1 )(0, y) = (0, λ(y)) for a certain diffeomorphism λ : R −→ R. Consider the
diffeomorphism h : R2 −→ R2 given by h(x, y) = (x, λ(y)) and define G : R2 −→ R2 as

G(x, y) =

{
(h ◦ φ1)(x, y), if (x, y) ∈ C1;
φ2(x, y), if (x, y) ∈ C2.

Thus applying Theorem 2.2 with W0 = W1 = R2, M0 = C1, N0 = C2,M1 = H1, N1 = H2 and
f = G we obtain the desired diffeomorphism ϕ : R2 −→ R2.

We are ready to prove the main result of this subsection.

Proof of Lemma 2.3. We consider first the case when there exists ε > 0 such that [−ε, ε]×R ⊂ D.
In this particular case denote by

D+ = {(x, y) ∈ D : x > 0} and Dε = {(x, y) ∈ D : x ≥ ε}.

Since D is an open and simply connected set, by the Riemann Theorem there exists a diffeomor-
phism G : D → R2. Set

C+ = G({ε} × R).

Clearly we have that C+ is a closed, connected and non-compact submanifold of R2. Thus by
Lemma 2.5 there exists a diffeomorphism

Φ+ : R2 → R2 such that Φ+(C+) = {ε} × R.

Composing Φ+ with an appropriate involution, if necessary, we can assume that (Φ+ ◦G)(Dε) =
{(x, y) ∈ R2 : x ≥ ε} .= Hε. Set

ψ+ = Φ+ ◦G.

Thus we have that ψ+(Dε) = Hε and ψ+({ε}×R) = {ε}×R. Therefore ψ+(ε, y) = (ε, h(y)) for some
diffeomorphism h of R. Let H : R2 → R2 be the diffeomorphism defined by H(x, y) = (x, h−1(y)).
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Lastly if we denote by Υ+ = H ◦ ψ+ we get that Υ+ is a diffeomorphism between Dε and Hε

such that Υ+|{ε}×R = Id . As before, denote by R2
+ = {(x, y) ∈ R2 : x > 0} and consider the map

T+ : D+ → R2
+ defined by

T+(z) =

{
Υ+(z) if x ∈ Dε,
z otherwise

Applying Theorem 2.2 with Wε = D+ , W1 = R2
+, M0 = M1 = (0, ε]×R, N0 = Dε, N1 = Hε and

f = T+ we obtain a diffeomorphism g+ : D+ → R2
+ such that g|(0,ε/2)×R = Id .

In a similar way if we denote by D− = {(x, y) ∈ D;x < 0}, and R2
− = {(x, y) ∈ R2 : x < 0}

we can construct a diffeomorphism g− : D− → R2
− such that g+|(−ε/2,0)×R = Id . Clearly the map

g : D → R2 defined by

g(z) =


g+(z) if x ∈ D+,
g−(z) if x ∈ D−,
z otherwise.

is a diffeomorphism and g|(−ε/2,ε/2)×R = Id . This ends the proof in this particular case.

Next we will see how to reduce the general case to one that we have already solved.

Consider a differentiable map σ : R → (0, 1) such that Dσ
.
= {(x, y) ∈ R2; |x| < σ(y)} ⊂ D.

Denote by Dσ/3
.
= {(x, y) ∈ R2; |x| < σ(y)/3}. We want to transform with a diffeomorphism the set

Dσ into the vertical strip (−1, 1)×R. Moreover, we want that this diffeomorphism is the identity on
Dσ/3. To this end we construct a diffeomorphism h : R2 → R2 of the type h(x, y) = (hy(x), y) where

hy : R→ R is an odd diffeomorphism satisfying hy(x) = x if 0 ≤ x ≤ σ(y)
3 and hy(σ(y)) = 1. Then

h maps diffeomorphically D onto h(D). Moreover, h|Dσ/3 = Id and h(D) ⊃ h(Dσ) = (−1, 1)× R.
Using the first part of the proof with any ε < 1 we can assert that there exist a diffeomorphism
g : h(D)→ R2 and a neighborhood V of {0}×R such that g|V = Id . We obtain the desired result
by considering the diffeomorphism g ◦ h and the neighborhood V ∩Dσ/3.

The last preliminary result is given in next lemma.

Lemma 2.6. Let α, β : R→ R be continuous maps, such that α(y) 6= 0 for all y ∈ R. Then, there
exists a diffeomorphism F : R2 → R2 such that F |{0}×R = Id and

(dF )(0,y) =

(
α(y) 0
β(y) 1

)
for all y ∈ R.

Proof. Set R(x, y) = 1+β(x+y)−β(y) and S(x, y) = α(x+y)− β(x+y)(α(x+y)−α(y))
R(x,y) . We have that

R(0, y) = 1 and S(0, y) = α(y) 6= 0 for all y ∈ R. By continuity, there exists an open neighborhood
V of {0} × R such that R(x, y) 6= 0 and S(x, y) 6= 0 for all (x, y) ∈ V. Moreover we can choose
V simply connected and satisfying the following property: If (x, y1) and (x, y2) belong to V then
(x, y) ∈ V for all y ∈ (y1, y2). Now consider H : V → R2 defined as

H(x, y) = (H1(x, y), H2(x, y)) =

(∫ y+x

y
α(s) ds , y +

∫ y+x

y
β(s) ds

)
.

Clearly H is C1 and H(0, y) = (0, y) for all y ∈ R.
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We claim that H restricted to an appropriate open subset of V is an embedding. To prove
this fact, note first that det((dH)(x,y)) = R(x, y)S(x, y) 6= 0 for all (x, y) ∈ V. Then H is a local

diffeomorphism. Moreover, by the Implicit Function Theorem, since ∂H2
∂y (0, b) 6= 0 it follows that

for any b ∈ R there exist an open interval Ib containing 0 and a differentiable map φb : Ib → R
satisfying the following property: For all x ∈ Ib, (x, φb(x)) ∈ V and H2(x, φb(x)) = b. We can
choose Ib maximal with respect this property. Since ∂H2

∂y (x, y) 6= 0 for all (x, y) ∈ V it follows that
Ib and φb are uniquely determined and the graph of φb(x) tends to the boundary of V when x
tends to the boundary of Ib.

For any b ∈ R denote by Jb the graph of φb and set W̃ = ∪b∈RJb. Now we claim that H
restricted to W̃ is globally one-to-one. To do this note that the equation H(x, y) = (a, b) with
(x, y) ∈ W̃ implies that (x, y) ∈ Jb. Then calling Lb(s) = H1(s, φb(s)) we need to solve the equation
Lb(s) = a. Since

L′b(s) =
∂H1

∂x
(s, φb(s)) +

∂H1

∂y
(s, φb(s))φ

′
b(s)

=
∂H1

∂x
(s, φb(s))−

∂H1

∂y

∂H2
∂x
∂H2
∂y

(s, φb(s)) = S(s, φb(s)) 6= 0,

it follows that Lb is monotone and consequently H(x, y) = (a, b) has at most one solution in W̃ .

Lastly, we claim that there exists an open neighborhoodW of {0}×R contained in W̃ . For b ∈ R,
let W̄b be an open neighborhood of (0, b) in V such that H|W̄b

is a diffeomorphism onto H(W̄b)
and let ε > 0 be such that (−ε, ε)× (b− ε, b+ ε) ⊂ H(W̄b). Then Wb = H−1((−ε, ε)× (b− ε, b+ ε))
is open. Note that

Wb =
⋃

s∈(−ε,ε)

H−1((−ε, ε)× {s}) ⊂
⋃

s∈(−ε,ε)

Js ⊂ W̃ .

Therefore the claim is proved by selecting W ⊂ ∪b∈RWb with the following properties: W is open,
connected, simply connected and contains {0}×R. Thus we will have that H|W is a diffeomorphism
onto H(W ). Therefore H(W ) is also connected and simply connected. By Lemma 2.3 there exist
open sets V1 ⊂ W, V2 ⊂ H(W ) and diffeomorphisms ϕ1 : W → R2 and ϕ2 : H(W ) → R2 such
that ϕ1|V1 = Id and ϕ2|V2 = Id . Then F = ϕ2 ◦H ◦ ϕ−1 : R2 → R2 is a diffeomorphism and for
any (x, y) ∈ V1 ∩H−1(V2) we have

d(F )(x,y) = d(ϕ2)H◦ϕ−1(x,y) ◦ d(H)ϕ−1(x,y) ◦ d(ϕ−1)(x,y) = Id ◦ d(H)(x,y) ◦ Id .

In particular, we obtain that

d(F )(0,y) = d(H)(0,y) =

(
α(y) 0
β(y) 1

)
,

for all y ∈ R, as we wanted to prove.

3 Proof of Theorem A

We will use the classical Kerékjártó Theorem and the Montgomery-Bochner Theorem, see [9]. We
also include the proof of the second result because it is very simple and explains what is understood
by a locally linearizable map.
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Theorem 3.1. (Montgomery-Bochner Theorem, see [9]). Let U ⊂ Rn be an open set and let
F : U → U be a class Cr, r ≥ 1, m-periodic map, having a fixed point p ∈ U . Then, there is a a
neighborhood of p, where F is Cr-linearizable and conjugated to the linear map L(x) := d(F )p x.

Proof. Consider the map from U into Rn, ψ =
∑m−1

i=0 L−i◦F i. Since both, F and L, are m-periodic
it holds that L◦ψ = ψ◦F. Moreover, since d(ψ)p = m Id, by applying the Inverse Function Theorem
we get that ψ is locally invertible and has the same regularity as F.

Proof of Theorem A. By the Kerékjártó Theorem the map F is C0 conjugated to a linear invo-
lution. Hence it is conjugated either to S(x, y) = (−x, y) or to − Id. First we consider the case
when F is C0-conjugated to S. Let g : R2 → R2 be the homeomorphism such that F ◦ g = g ◦ S.
Then, since g is a homeomorphism, we know that L := g({0} × R) is a non-compact, closed and
connected topological submanifold of R2 which is fixed by F. We claim that L is a differentiable
submanifold of R2. To do this we will show that L is locally the graph of a C1 function.

Let (a, b) ∈ L. Then (a, b) is a fixed point of F and by the Montgomery-Bochner theorem
d(F )(a,b) is conjugated to S. Then d(F )(a,b) − Id 6= 0. If we write F = (F1, F2) this implies that at
least one of the functions F1(x, y)− x and F2(x, y)− y has non-zero gradient at (a, b). Assume for

instance that ∂(F1(x,y)−x)
∂x (a, b) 6= 0. By the Implicit Function Theorem there exist neighborhoods

V of (a, b) and W of b and a C1- map ψ : W → R such that L ∩W = {(ψ(t), t) : t ∈ W}. This
proves the claim.

By Lemma 2.5 there exists a diffeomorphism ϕ : R2 → R2 such that ϕ(L) = {0}×R. Therefore
F̃ = ϕ◦ F ◦ϕ−1 is a C1- involution that has {0}×R as a line of fixed points. Then F̃ (0, y) = (0, y).

Thus d(F̃ )(0,y) =

(
A(y) 0
B(y) 1

)
for some A,B : R→ R continuous. Moreover since d(F̃ )(0,y) must

be conjugated to S it follows that A(y) = −1 for all y ∈ R.
Now using Lemma 2.6 we choose φ : R2 → R2 a diffeomorphism such that φ|{0}×R2 = Id and

d(φ)(0,y) =

(
1 0

−B(y)/2 1

)
.

Lastly define

Φ(x, y) =

{
φ(x, y) if x ≥ 0,

F̃ (φ(S(x, y)) otherwise.

which is C1 because

lim
x→0+

d(Φ)(x,y) =

(
1 0

−B(y)/2 1

)
=

(
−1 0
B(y) 1

)(
1 0

−B(y)/2 1

)(
−1 0
0 1

)
= lim

x→0−
d(Φ)(x,y).

Since det(d(φ)(0,y)) = 1 it follows that φ preserves orientation. In addition we know that all
points on the line x = 0 are fixed and then φ({x, y) ∈ R2 : x ≥ 0}) = {(x, y) ∈ R2 : x ≥ 0}. Thus
we obtain that Φ is a diffeomorphism. Computing directly Φ−1 we have

Φ−1(x, y) =

{
φ−1(x, y) if x ≥ 0,

S(φ−1(F̃ (x, y)) otherwise.
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Finally, again a direct computation gives that Φ−1 ◦ F̃ ◦ Φ = S. Since F̃ = ϕ ◦ F ◦ ϕ−1 the
map Φ−1 ◦ ϕ is the desired C1-conjugation. This ends the proof for this case.

Now we consider the case when F is C0-conjugated to − Id . Then F has a unique fixed point
p. By the proof of Theorem 3.1 the map Id−F conjugates F to − Id in a neighborhood W of p. By
Theorem 2.1 the embedding (Id−F )|V can be extended to be a global diffeomorphism π : R2 → R2

such that π|V = (Id−F )|V for some neighborhood V ⊂W of p. Since F is topologically conjugated
to− Id we can select V so that F (V ) ⊂ V . Consider now F̃ = π◦F ◦π−1. The map F̃ has 0 as a fixed
point and F̃ |π(V ) = − Id . Let γ : R2 → R2 be the homeomorphism such that γ−1◦ F̃ ◦γ = − Id and
consider L = γ({0}×R). Then L is a connected, closed and non-compact topological submanifold
of R2 invariant by F̃ . Our next objective will be to modify L for obtaining a C1 submanifold with
the same properties.

Let r > 0 be such that Br = {x ∈ R2 : |x| < r} ⊂ π(V ) and set t0 = max{t ∈ R : |γ(0, t)| = r}.
Then L1 = γ({0} × (t0,∞)) does not intersect Br. Since F̃ |Br = − Id it follows that F̃ (L1) =
γ({0} × (−t0,−∞)) neither cuts Br. Set L0 = {tγ(0, t0); t ∈ [−1, 1]} and

L̃ = L1 ∪ L0 ∪ F̃ (L1).

Clearly L̃ is also a connected closed and non-compact topological submanifold of R2 invariant by
F̃ . Hence it divides R2 in two connected and open regions A and B that are permuted by F̃ .
Consider now a differentiable map f : (0,∞)→ R2 satisfying the following properties:

1. f(t) = tγ(0, t0) if t ≤ 1/2,

2. f(t) ∈ A for all t > 1/2,

3. limt→∞ |f(t)| =∞,

4. f is one to one.

Denote by M0 = f((0,∞)). By construction, M0 is a connected and differentiable submanifold
of R2 and M0 ∩ F̃ (M0) = ∅. Thus M = M0 ∪ F̃ (M0) ∪ {(0, 0)} is a connected, closed and non-
compact differentiable submanifold of R2 which is invariant by F̃ . By Lemma 2.5 there exists a
diffeomorphism ϕ : R2 → R2 such that ϕ(M) = {0} × R. Therefore the map

F̂ = ϕ ◦ F̃ ◦ ϕ−1

is a differentiable involution that has {0} × R as an invariant line. Thus F̂ (0, y) = (0, g(y)) for a
certain one dimensional differentiable involution g : R→ R. In this case the map h(y) = y − g(y)
is a global diffeomorphism that conjugates g with − Id . Therefore the map ϕ̃ : R2 → R2 defined
by ϕ̃(x, y) = (x, h(y)) is a diffeomorphism that conjugates F̂ with an involution F̄ that satisfies
that F̄ |{0}×R = − Id . Therefore

d(F̄ )(0,y) =

(
A(y) 0
B(y) −1

)
,

for some continuous functions A and B with A(0) = −1 and B(0) = 0. Note that since A(0) = −1
and F̄ is a diffeomorphism, it follows that A(y) < 0 for all y ∈ R. On the other hand since F̄ 2 = Id
we will have

d(F̄ )(0,−y) ◦ d(F̄ )(0,y) = Id,
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which implies that

A(−y) =
1

A(y)
and B(−y) =

B(y)

A(y)

for all y ∈ R.
Consider now the continuous maps a, b : R→ R defined as:

a(y) =

{
1 if y ≥ 0,

− 1
A(y) otherwise,

and b(y) =

{
0 if y ≥ 0,

−B(y)
A(y) otherwise.

Direct computations show that

a(y) = −A(−y)a(−y) and b(y) = b(−y)−B(−y)a(−y),

for all y ∈ R.
Since a(y) 6= 0 for all y ∈ R, by Lemma 2.6 we can choose a diffeomorphism φ : R2 → R2

satisfying that φ|{0}×R = Id and

d(φ̃)(0,y) =

(
a(y) 0
b(y) 1

)
.

As in the previous case we define the map

Φ(x, y) =

{
φ(x, y) if x ≥ 0,

F (φ(−x,−y)) otherwise,

satisfying

lim
x→0+

d(Φ)(x,y) =

(
a(y) 0
b(y) 1

)
=

(
−A(−y)a(−y) 0

b(−y)−B(−y)a(−y) 1

)
=

(
A(−y) 0
B(−y) −1

)(
a(−y) 0
b(−y) 1

)(
−1 0
0 −1

)
= lim

x→0−
d(Φ)(x,y).

The same considerations as in the previous case show that Φ is a C1-diffeomorphism that
conjugates F̄ and − Id . Since F̄ and F are C1-conjugated this fact ends the proof of the theorem.
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