
Chaotic dynamics of the Kepler problem with

oscillating singularity

Alessandro Margheri∗

Fac. Ciências da Univ. de Lisboa e CMAF-CIO,

Campo Grande, Edifício C6, piso 2, P-1749-016 Lisboa Portugal

e-mail: amargheri@fc.ul.pt

and

Pedro J. Torres†

Departamento de Matemática Aplicada,

Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

e-mail: ptorres@ugr.es

Abstract

We prove the presence of chaotic dynamics for the classical two-body

Kepler problem with a time-periodic gravitational coefficient oscillating

between two fixed values. The set of chaotic solutions we detect is coded
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obtained for large period T as well as for small angular momentum µ. In

particular, we provide an explicit lower bound on T and explicit upper

bound on µ which guarantee the existence of complex dynamics. We get

our results by applying a simple and well known topological method, the
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to small perturbations of the gravitational coefficient and to the addition

of a small friction term.
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1 Introduction

The motivation of this paper is to study some aspects of the dynamics of the
system

ü = −h(t)
u

|u|3 , (1.1)

where h(t) is a T -periodic function. This model can be regarded as a Kepler
problem with a fluctuating gravitational parameter, and with this interpretation
h(t) should be positive for every t. Nevertheless, negative values for h(t) are
justified if we take into account the photogravitational effect, that is, the effect
of solar radiation pressure. Imagine a body (a small asteroid or spacecraft) of
mass m that is orbiting around a star of luminosity L(t) of mass M >> m. The
cross-section to mass ratio of the body is called the sailing capacity, denoted
by σ(t). In a spacecraft or artificial satellite, this parameter can be modulated
by manoeuvring a solar sail. If the sailing capacity is significant, there is an
interplay between the attractive gravitational force and the repulsive force due
to the solar radiation pressure exerted by the star, in such a way that the motion
of the body is ruled by system (1.1) with

h(t) = GM − σ(t)L(t)

4πc
,

where G is the gravitational constant and c the speed of light in the vacuum
(see for instance [14]). Eventually, the effect of the solar radiation pressure may
be stronger than the gravitational force, leading to negative values of h(t).

Originally, system (1.1) was proposed by Gyldén to explain the secular ac-
celeration observed in the Moon’s longitude, but nowadays it is mainly used to
study the photogrativational effect described above, that may strongly affect
the global dynamics of the model. For different mathematical approaches to
this problem, one can consult the papers [2, 6, 4, 13, 14, 15, 16, 17] and the
references therein.

Our model is an example of central force field. Every solution u(t) of (1.1)
lies in a plane through the origin and perpendicular to the angular momentum
u(t) ∧ u̇(t) = u(0) ∧ u̇(0), which is a conserved quantity. In what follows we
consider orbits with the same angular momentum u(0) ∧ u̇(0) 6= 0, so that
they all belong to the same plane, which from now on we identify with R

2.
Introducing in it polar coordinates

u(t) = x(t)
(
cos θ(t), sin θ(t)

)

with polar radius x(t) = |u(t)| > 0 and angle θ(t) ∈ R for every t, system (1.1)
is equivalent to

ẍ =
µ2

x3
− h(t)

x2
, (1.2)

and θ̇ = µ
x2 , where µ = |u(0)∧u̇(0)|. Notice that equation (1.1) is invariant under

the group of rotations with center in the origin. As a consequence, a solution
x(t) of (1.2) determines uniquely, modulo the initial angle θ0, a solution of (1.1).

2



Our objective is to provide sufficient conditions such that (1.2), and hence (1.1)
has chaotic dynamics, with periodic orbits of any period, when the restriction
of h(t) to the interval [0, T ] is a piecewise constant function of the form

h(t) =

{
h1 if t ∈ [0, T1]

h2 if t ∈]T1, T1 + T2 =: T ].
(1.3)

This particular choice of h(t), which, of course, does not allow to tackle the
general model, may seem just of mathematical interest. However, it can actually
represent meaningful physical systems. For instance, one can think about an
artificial satellite orbiting around a star with fixed luminosity and with a cross-
section changing periodically in a piecewise constant way by means of a solar
sail. In addition, our results are robust under suitable small perturbations, as
we will see later. This means, in particular, that h(t) may actually be a smooth
function which is a small deformation of the stepwise one defined by (1.3).

In dynamical terms, the chaotic solutions we find are characterized by the
number of revolutions made in each period T. Such number will vary in an
apparently random way, following any prescribed bounded sequence of positive
integers, where the bound depends on the period. These solutions are obtained
considering two different types of conditions. In the first type it is assumed that
the period T is above an explicitly given threshold. Generally speaking, this case
corresponds to a large period T . The second kind of conditions take advantage
of the fact that, fixed T1 and T2, one can make the threshold mentioned above
tend to zero as µ tends to zero. This singles out an explicit upper bound on µ,
below which chaotic solutions exist.

Our proofs are based on a simple topological method to detect periodic
points and chaotic orbits that is applied to the Poincaré map associated to a
first order planar system equivalent to (1.2). The method, called the “stretching
along the path” (SAP for short), was developed, essentially, in [10](but see also,
for example, [7, 11] for a recent presentation of this approach with different
applications). Its application to ODEs requires, in general, a simple but careful
phase plane analysis, which often allows to enter the setting of the theory of
the generalized linked twist maps (LTMs) (see [8] and references therein). A
generalized LTM φ is the composition of two continuous maps, φ = φ2 ◦φ1 each
acting on a topological annulus as a twist map. The annuli (one of which may
be of ’infinite radius’, i.e. a topological strip, in which case φ is called ’bend-
twist’ map) are linked through regions homeomorphic to the unit square. If the
twist on the boundaries of the annuli is sufficiently strong, the SAP method
guarantees the existence of complex dynamics for φ, with periodic points of any
period, in the topological rectangles which realize the link. This is the general
framework which we will use to obtain our results.

It is worth to mention that the possibility to apply the SAP method to the
Gyldén model in order to detect chaotic dynamics was suggested in the recent
monograph [19] (see Section 4.6 therein).

In the next section we will state explicitly the definition of chaos we consider
and recall briefly the SAP technique as well as the general theorem we will use
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to detect chaos. The phase plane analysis necessary for the application of the
SAP method is performed in Section 3. The main mathematical results for
equation (1.1) are contained in Section 4 and Section 5. Section 4 is focused on
the case when the function h(t) takes values of different sign, whereas Section
5 analyzes the case of a positive h(t). Finally, in Section 6 we show that, as a
consequence of our main results, chaotic dynamics is found in sets of solutions
with small angular momentum.

2 Definition of chaos and SAP method

The complex dynamics for a map φ may be defined in terms of the erratic
and unpredictable form in which many of its orbits {xn = φn(x) : n ≥ 0},
move between suitable subsets, say K0, · · · Kp, of its domain. This behaviour is
described by encoding the orbits with sequences of symbols (s0, s1, . . . , sn . . . ),
where sk ∈ {1, · · · , p} means that φk(x) ∈ Ksk . Chaos will occur for φ when
we are able to reproduce with its orbits a sufficiently broad set of sequence of
symbols.

Since we will work in the phase plane, all definitions will be given in R
2

(rather than in a general metric space.)
We start with our precise definition of chaotic dynamics.

Definition 1. Let φ : Dφ(⊆ R
2) → R

2 a map and let D ⊆ Dφ be a nonempty
set. We say that φ induces chaotic dynamics on p ≥ 2 symbols in the set D if
there exist p nonempty pairwise disjoint compact sets

K1, · · · ,Kp ⊆ D

such that, for each two–sided sequence of p symbols

(si)i∈Z ∈ Σp := {1, · · · , p}Z,

there exists a corresponding sequence (wi)i∈Z ∈ DZ with

wi ∈ Ksi and wi+1 = φ(wi), ∀ i ∈ Z (2.1)

and, whenever (si)i∈Z is a k−periodic sequence (that is, si+k = si , ∀i ∈ Z) for
some k ≥ 1, there exists a k−periodic sequence (wi)i∈Z ∈ DZ satisfying (2.1).

A consequence of the previous definition is that, when φ is continuous and in-

jective, as is the case for a Poincaré map, there exists a compact set Λ ⊂
p⋃

i=1

Ki

which is φ invariant (that is φ(Λ) = Λ) and such that φ|Λ is semiconjugated
with the Bernoulli shift on two symbols. We recall that the Bernoulli shift on
p symbols σ : Σp → Σp is defined by σ : (si)i 7→ (si+1)i and represents the
model of chaotic map, since it displays various important features (like tran-
sitivity, sensitive dependence on the initial points, density of periodic orbits,
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positive topological entropy) associated to complex dynamics. The semiconju-
gation between φ and σ means that there exists a continuous and onto function
g : Λ → Σp such that σ ◦ g = g ◦ φ. Loosely speaking, the existence of the semi-
conjugation g implies that the chaotic dynamics of σ on Σp provides a lower
bound for the complexity of the dynamics of φ|Λ. Hence, even without the ref-
erence to the periodic points, the existence of g is considered by some authors
as a possible definition of chaotic dynamics (see, for example [1, 3]). However,
as a consequence of Definition 1 we can take an invariant set Λ containing as a
dense subset the periodic points of φ and such that the counterimage (by the
semiconjugacy g) of any periodic sequence (si)i in Σp contains a periodic point
of φ having the same period of (si)i (see [7] for the details).

We recall now the key technique that we use to detect chaotic dynamics on p
symbols according to Definition 1, the “stretching along the path”(SAP) method.
The sets on which it applies are oriented topological rectangles, denoted by
R̂ := (R,R−), where R is a subset of R2 homeomorphic the unit square [0, 1]2

(a “curvilinear rectangle” in our applications) oriented by choosing two compact
disjoint arcs in its boundary (two “opposite sides”) R− = R−

l
∪R−

r . The letters
r and l stand for “left” and “right” and their use is merely conventional. In the
same spirit, we will also use the letters u and d (“up” and “down”) for the chosen
opposite sides.

The SAP property provides a notion of topological crossing between a topo-
logical oriented rectangle and its image through a map φ which allows to obtain
the existence of a fixed point for φ. Its precise definition is presented below the
in a slightly simplified form.

Suppose that φ : Dφ(⊆ R
2) → R

2 is a continuous map defined on a set Dφ.

Let P̂ := (P ,P−) and Q̂ := (Q,Q−) be oriented rectangles in Dφ.

Definition 2. Let H ⊆ P be a compact set. We say that (H, φ) stretches P̂ to

Q̂ along the paths and write

(H, φ) : P̂ ≎−→Q̂,

if the following condition hold:

• for every path γ : [t0, t1] → P such that γ(t0) ∈ P−
l

and γ(t1) ∈ P−
r (or

γ(t0) ∈ P−
r and γ(t1) ∈ P−

l
), there exists a subinterval [t′, t′′] ⊆ [t0, t1]

such that
γ(t) ∈ H, φ(γ(t)) ∈ Q , ∀ t ∈ [t′, t′′]

and, moreover, φ(γ(t′)) and φ(γ(t′′)) belong to different components of
Q−.

Broadly speaking, (H, φ) : P̂ ≎−→Q̂ means that there is a subset H of P
such that any path in P connecting the two opposite sides of P− has a sub-
path which is contained in H and is stretched by φ across Q from Q−

l
to Q−

r

(see Figure 2.1). As proved in [12], when (Hi, φ) : P̂ ≎−→P̂ for at least p ≥ 2
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Figure 2.1: A graphical illustration of the SAP property

nonempty pairwise disjoint sets H1 , . . . ,Hp , then we have complex dynamics
on p symbols for φ according to Definition 1 (see also [11, Theorems 2.2-2.3]). In
fact, the existence of such Hi correspond to p “topologically correct” crossings
between P and φ(P) which allow to code the orbits of φ with arbitrary sequences
of p symbols and to get the existence of periodic points of φ, obtained as fixed
points of suitable iterates of φ.

We point out that other approaches to complex dynamics either do not guar-
antee the existence of the periodic points of φ ([5]) or rely on the computation of
suitable sophisticated homological invariants such as, for example, the Conley
index ([9]) or the Lefschetz fixed point index ([18]). In comparison, the SAP
technique provides a simpler but effective tool to detect chaotic dynamics and
the existence of periodic solutions of any period in some ODEs models.

In the application considered in this paper the Poincaré operator φ will
naturally factor as the composition of two maps. In this situation, our results
will be consequence of the following theorem, which corresponds to Theorem
2.1 in [8] and to Theorem 3.2 in [11].

Theorem 1. Let φ1 : Dφ1
(⊆ R

2) → R
2 and φ2 : Dφ2

(⊆ R
2) → R

2 be continu-

ous maps and let P̂ := (P ,P−) and Q̂ := (Q,Q−) be oriented rectangles in Dφ1

and Dφ2
, respectively. Suppose that the following conditions are satisfied:

(Hφ1
) there exist m ≥ 1 pairwise disjoint compact sets H1 , . . . ,Hm ⊆ P such

that (Hi, φ1) : P̂ ≎−→Q̂, for i = 1, . . . ,m ;

(Hφ2
) there exist ℓ ≥ 1 pairwise disjoint compact sets K1 , . . . ,Kℓ ⊆ Q such

that (Ki, φ2) : Q̂ ≎−→P̂, for i = 1, . . . , ℓ .

If at least one between m and ℓ is greater or equal than 2, then the map φ :=
φ2 ◦ φ1 induces chaotic dynamics on m× ℓ symbols in the set

H∗ :=
⋃

i=1,...,m

j=1,...,ℓ

H′
i,j with H′

i,j := Hi ∩ φ−1
1 (Kj).
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In the framework of the previous result the orbits (wn)n∈Z of φ = φ2 ◦ φ1

are coded by sequences of pairs of positive integers s = (sn)n = (pn, qn)n ∈
{1, . . . ,m}Z × {1, . . . , ℓ}Z according to the rule wn ∈ H′

pn,qn . This rule means
that wn ∈ Hpn

and wn+1 = φ1(wn) ∈ Kqn .
If either m = 1 or l = 1 we go back, essentially, to the setting of Defi-

nition 1. In fact, if for example l = 1, as it will be in our first main result,
Theorem 2 below, the sequences which encode the trajectories are of the form
(sn)n = (pn, 1)n. The symbol 1 in the second component encodes some dynam-
ical information, but it is qualitatively the same for all orbits, and therefore
it does not contribute to their erratic behaviour, which is determined only by
(pn)n. Therefore, in this case we will still write that φ induces chaotic dynamics
on m symbols rather than on m× 1 symbols.

3 Analysis of phase portraits

To prepare the setting for the application of the SAP method to our problem, in
this section we carry out the analysis of the phase planes associated to equation
(1.2) when h(t) is piecewise constant and takes two values in each period.

If h(t) satisfies (1.3), equation (1.2) takes the form

ẍ =

{
µ2

x3 − h1

x2 if t ∈ [iT, iT + T1]
µ2

x3 − h2

x2 if t ∈]iT + T1, iT + T1 + T2 := (i+ 1)T ],
(3.1)

with i ∈ Z. The solutions of equations (3.1) are a chain of segments of solutions
of two periodically alternating autonomous equations of the form

ẍ =
µ2

x3
− h

x2
. (3.2)

Since we will consider that h2 can be either positive or negative, in this section
we analyse the phase portrait of the planar system, equivalent to (3.2),

{
ẋ = y,

ẏ = µ2

x3 − h
x2 .

when h > 0 and when h < 0.
By defining the potential energy

Fh(x) = − µ2

2x2
+

h

x
,

the trajectories of (1.2) are the level curves of the energy function

Vh(x, y) =
y2

2
− Fh(x).

All the orbits of this system are defined for t ∈ R.
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Figure 3.1: Phase plane of eq. (3.2) with h > 0. The thick curve corresponds
to the parabolic orbit.

First, we analyze the case h > 0. With a slight abuse of the terminology,
we will call parabolic, elliptic, hyperbolic orbits the solutions of (1.2) which de-
scribe the evolution of the radial component of, respectively, parabolic, elliptic,
hyperbolic orbits of the corresponding Kepler problem. There exists a parabolic
orbit with implicit equation

Vh(x, y) = 0,

which separates hyperbolic orbits from elliptic ones (see Fig. 3.1). Elliptic orbits

rotate around the unique equilibrium (µ
2

h , 0) (which corresponds to a circular
orbit of the Kepler problem) and can be written as

Vh(x, y) = −Fh(d),

with µ2

2h < d < µ2

h . In this way, the elliptic cycles are parametrized according to
d. The minimum x value (pericenter) and the maximum x value (apocenter) of
the corresponding orbit are given respectively by

xmin(d) = d, xmax(d) =
h

Fh(d)
− d. (3.3)

Moreover, by Kepler’s third law, the period of the corresponding orbit is
given by

Th(d) =
πh√
2
[Fh(d)]

− 3
2 . (3.4)
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Figure 3.2: Phase plane of eq. (3.2) with h < 0.

On the other hand, when h < 0 the phase curves are given by

Vh(x, y) = C

for C > 0 (see Fig. 3.2). For a given C > 0, the corresponding orbit is defined
for every

x ≥ xC =
−h+

√
h2 + 2µ2C

2C
.

Note that xC is a decreasing function of of C and that xC → +∞ as C → 0+.

In order to enter the setting suitable for stating and proving our results, we
rewrite equation (3.1) in the equivalent form

{
ẋ = y

ẏ = µ2

x3 − h(t)
x2

(3.5)

where t ∈ R and h(t) is defined by (1.3). The Poincaré map of system (3.5) is
well defined as a homeomorphism of the half-plane R

+ × R = {(x, y) : x > 0}
onto itself by

φ : R+ × R → R
+ × R φ(z0) = (x(T, z0), y(T, z0)),

where (x(·, z0), y(·, z0)) is the solution of system (3.5) with initial condition
(x(0), y(0)) = z0 = (x0, y0). The map φ can be decomposed as

φ = φ1 ◦ φ2 ,
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where, φi(z), i = 1, 2, is the point at time Ti of the solution of the autonomous
system

(Eqi)

{
ẋ = y

ẏ = µ2

x3 − hi

x2

starting from z ∈ R
2 at time t = 0.

In what follows, we will tackle the complex behaviour of solutions of (3.1)
considering the two cases h1 > 0, h2 < 0 and h1 > 0, h2 > 0.

4 The case h1 > 0, h2 < 0.

In this section we consider the case when h1 > 0, h2 < 0. In the solar sail
model referred in the introduction, it corresponds to a situation where the solar
radiation pressure exceeds the gravitational attraction force during some interval
of time. Our main result is as follow.

Theorem 2. For any choice of the positive integer m ≥ 2 and of the time
T2 > 0, there exists T ∗

1 such that if T1 > T ∗
1 , equation (3.1) exhibits chaotic

dynamics on m symbols.
In terms of the dynamical properties of the solutions of (1.1) our result reads

as follows. Let s := (si)i∈Z be an arbitrary two-sided sequence of integers, with
0 ≤ si ≤ m − 1 for each i ∈ Z. Then, there exists a solution ũ(·) of equation
(1.2) which satisfies the following properties:

-when t ∈ [iT, iT + T1], ũ(t) describes an elliptic orbit (which depends on i)
passing si + 1 times from the apocenter and si times from the pericenter;

-when t ∈]iT + T1, (i+ 1)T [ the function x(t) = |ũ(t)| is strictly convex and
has exactly one minimum.

Moreover, if the sequence si is k-periodic (for some k ≥ 1), namely, si+k = si
for all i ∈ Z, then there exists at least one solution ũ(·) with the properties
described above and such that ũ(t+ kT ) = ũ(t) , for each t ∈ R.

The result is stable with respect to small perturbations. In particular, for any
fixed T1 > T ∗

1 there is ε > 0 such that for each measurable T -periodic weight
q(t) satisfying

ˆ T

0

|q(t) − h(t)| ≤ ε

and each constant c ∈ R with
|c| ≤ ε,

the perturbed equation

u′′ + cu′ = −q(t)
u

|u|3

has solutions with the same behaviour as the one described above.
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Figure 4.1: Intersection of the parabolic orbit with ΓC .

Note that the function q(t) above may be chosen in the class of smooth
functions.

The chaotic dynamics will be obtained in a topological rectangle P of the
phase plane which links a topological annulus and a topological strip on which
the Poincaré operator φ acts as a bend-twist map.

The rest of the section is devoted to the proof of Theorem 2.

4.1 Linking of phase portraits.

The parabolic orbit of the autonomous system (Eq1) is given by

Vh1
(x, y) = 0. (4.1)

We are interested in the intersection of such curve with the orbits of the au-
tonomous system (Eq2), which are given by

ΓC = {(x, y) : Vh2
(x, y) = C} , C > 0. (4.2)

It is not difficult to check that curves (4.1)-(4.2) has exactly two different points
of intersection, P1(C) and P2(C), with abscissa

xint =
h1 − h2

C

if and only if 0 < C < 2h1

µ2 (h1 − h2) (see Fig. 4.1). The time of travel between

the points (xC , 0) and P1(C) along the trajectory ΓC can be explicitly computed

11



Figure 4.2: Intersection of the parabolic orbit with the orbits ΓC1
,ΓC2

and the
position of the point P3.

as

τ(C) =

ˆ xint

xC

u√
2Cu2 + 2h2u− µ2

du =

=
1

2C3/2

[√
2h2

1 − 2h1h2 − µ2C +
h2√
2
log

( √
h2
2 + 2µ2C

2h1 − h2 +
√
4h2

1 − 4h1h2 − 2µ2C

)]
.

Elementary but lengthy computations prove that τ(C) is a strictly decreasing
function of C such that

lim
C→0+

τ(C) = +∞, lim
C→

2h1

µ2 (h1−h2)

τ(C) = 0. (4.3)

4.2 Construction of the oriented topological rectangles.

In this subsection, we are going to construct the oriented topological rectangles
needed to prove the existence of chaotic dynamics by means of the SAP method.
This is done through several steps:

Step 1. By using (4.3), there exists a unique 0 < C1 < 2h1

µ2 (h1 − h2) such that

T2 = τ(C1).

Step 2. Choose C2 < C1. For the corresponding orbits ΓC1
,ΓC2

, one has τ(C1) <
τ(C2).

Step 3. Let us define the point P3 := φ2(xC2
, 0) (see Figure 4.2). Of course, P3

12



Figure 4.3: Construction of the topological rectangles P ,Q.

belongs to the orbit γC2
. More explicitly, x3 is determined by solving the

equation
ˆ x3

xC2

u√
2C2u2 + 2h2u− µ2

du = T2,

and then letting

y3 =

√
2C2 +

2h2

x3
− µ2

x2
3

.

Since τ(C1) < τ(C2), P3 is located on the segment of the orbit ΓC2
deter-

mined by (xC2
, 0) and P1(C2).

Step 4. Select a cycle

C = {(x, y) : Vh1
(x, y) = −Fh1

(d)} , µ2

2h1
< d <

µ2

h1
,

of the autonomous system (Eq1) choosing d close enough to µ2

2h1
, as to

guarantee that C crosses the x axis to the left of xC1
, has only two inter-

sections with ΓC1
and intersects the segment of orbit ΓC2

determined by
P3 and P1(C2) (see Fig. 4.3).

Now, we are ready to construct the topological rectangles as follows:

P = {(x, y) : y > 0,−Fh1
(d) ≤ Vh1

(x, y) ≤ 0, C2 ≤ Vh2
(x, y) ≤ C1},

Q = {(x,−y) : (x, y) ∈ P}.
Figure 4.3 provides a graphical illustration. The suitable orientation on P is
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obtained by choosing its “up” and “down” sides. More formally P̂ = (P ,P−)
where P− = ∂Pu ∪ ∂Pd and

∂Pu = {(x, y) ∈ P : Vh1
(x, y) = 0},

∂Pd = {(x, y) ∈ P : Vh1
(x, y) = −Fh1

(d)}.

The proper orientation on Q is obtained selecting its “left” and “right” sides,
namely Q̂ = (Q,Q−) where Q− = ∂Ql ∪ ∂Qr and

∂Ql = {(x, y) ∈ Q : Vh2
(x, y) = C1},

∂Qr = {(x, y) ∈ Q : Vh2
(x, y) = C2}

4.3 Proof of Theorem 2.

Define
T ∗
1 = mT (C) (4.4)

where

T (C) = πh1√
2
[Fh1

(d)]−3/2.

is the period of the cycle C of the autonomous system (Eq1) and take T1 > T ∗
1 .

Fix a curve γ in P joining ∂Pd and ∂Pu. Following the evolution of γ under
the flow given by system (Eq1) on the time interval [0, T1], at time T1 we get a

curve, φ1(γ), which winds around the the equilibrium (µ
2

h1
, 0) at least m−1 times

and whose intersection with Q contains m arcs joining ∂Qr and ∂Ql (see Fig. 4.4
for a graphical illustration of this crossing property when m = 2). These curves
correspond to subarcs of γ made of initial conditions z = (x, y) of solutions
(x(t), y(t)) of (Eq1) which at time T1 crossed the x axis 1, 3, · · · , 2m− 1 times.
As a consequence, if we denote by n(z) the number of zeros of the y component
of of the solution of (Eq1) associated to the initial condition z, then the sets

Hi = {z ∈ P : φ1(z) ∈ P and n(z) = 2i+ 1}, i = 0, · · ·m− 1,

are non empty disjoint compact subsets of P . Moreover, (Hi, φ1) : P̂ ≎−→Q̂, for
i = 0, . . . ,m− 1 and assumption (Hφ1

) of Theorem 1 is satisfied.
Let now consider a curve γ in Q joining ∂Qr and ∂Ql. Its image at time

T = T1 + T2 under the flow of system (Eq2) on the time interval [T1, T ] gives a
curve, φ2(γ), that crosses P and containing a subarc in P which joins ∂Pd and
∂Pu (see Figure 4.5).

As a consequence, the set

K1 = Q∩ φ−1
2 (P)

is a nonempty compact subset of Q and (K1, φ2) : Q̂ ≎−→P̂. Then, also assump-
tion (Hφ2

) of Theorem 1 is satisfied with l = 1, and we conclude that φ = φ2◦φ1

14



Figure 4.4: An illustration of the SAP property for φ1 when m = 2. The image
under φ1 of any curve γ in P joining ∂Pd and ∂Pu is a curve which winds
around the equilibrium of (Eq1) and whose intersection with Q contains two
curves joining ∂Qr and ∂Ql.

Figure 4.5: The image under φ2 of any curve in Q joining ∂Qr and ∂Ql is a
curve that crosses P vertically.
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induces chaotic dynamics on m = m× 1 symbols in

m−1⋃

i=0

H∗
i,1 ⊂ P ,

where H∗
i,1 = Hi ∩ φ−1

1 (K1)
The dynamical description of the chaotic solutions follows recalling that a

solution x(t) of (1.2) define uniquely, modulo a rotation, a solution u(t) of (1.1)
with h(t) defined by (1.3). Then, the zeros of the y component of the phase curve
(x(t), y(t)) in [iT, iT + T1[ correspond to passages through the apocenter and
pericenter along the elliptic orbit (which depends on i) defined by u|[iT,iT+T1[,
where u(t) is the solution of the Kepler problem with h = h1. Moreover, the
first component x(t) of a solution of (Eq2) is convex in the interval [T1, T ] and
has a strict minimum in ]T1, T [. This completes our description.

The stability of the above result under small perturbations is a standard fact
which follows, essentially, arguing like in [8][Theorem 4.2] and we omit its proof.

5 The case h1 > 0, h2 > 0.

When h1 > 0, h2 > 0, equation (1.2) oscillates between two Kepler equations

ẍ =
µ2

x3
− h1

x2
, t ∈ [iT, iT + T1[, (5.1)

and

ẍ =
µ2

x3
− h2

x2
, t ∈ [iT + T1 + T2 = (i+ 1)T [, (5.2)

where i ∈ Z. In this case, considering the corresponding equivalent first order
systems (Eq1) and (Eq2), the complex dynamics may be obtained entering the
setting of the generalized linked twist maps. In this framework, we note that
it is possible to carry out two different constructions of the linking among the
trajectories of these systems which allow to optimize the lower bound on the
period T = T1 + T2 for which chaotic dynamics occurs (see Remark 1 below).
Broadly speaking, the chaotic dynamics will be described by the erratic number
of revolutions made in each period by many solutions of (Eq1) and (Eq2).

We will sketch just the proof of the first result. The second one may be easily
obtained from the ideas presented before and the corresponding phase portrait
(see Fig. 5.2).

We recall that systems (Eqk), k = 1, 2 have closed trajectories of the form

y2

2
= Fk(x)− Fk(d), k = 1, 2,

where

Fk(x) =
hk

x
− µ2

2x2
, k = 1, 2, (5.3)

16



and hk

2µ2 < d < hk

µ2 . The value d = hk

2µ2 corresponds to the parabolic orbit.

Moreover, by (3.4), the period of the closed orbits of (5.1) and of (5.2) through
(d, 0) is given, respectively for k = 1 and k = 2, by

Tk(d) =
πhk√

2
Fk(d)

−3/2 =
πhk√
2
Fk(xk(d))

−3/2,

where by definition

xk(d) =
hk

Fk(d)
− d.

The function Fk(d) is decreasing on
]

hk

2µ2 ,
hk

µ2

[
, and the limits

lim
d→

hk
2µ2

Tk(d) = +∞, lim
d→

hk
µ2

Tk(d) =
πhk√

2
Fk

(
hk

µ2

)−3/2

hold for k = 1, 2.
Now, we are prepared to state the main results of this section. From now on,

without loss of generality, we assume that h1 > h2. We distinguish two cases.
In the first one, the equilibrium of system (Eq1) is “inside” the parabolic orbit
of system (Eq2), whereas in the second case such equilibrium is “outside”.

Theorem 3. Let us suppose that h1 < 2h2. Let m and l be two positive integers

one of which greater or equal than 2. For a fixed d ∈
]
µ2

h1
, µ2

h2

[
, let us assume

that

a1) T1 > T ∗
1 = (m+ 2)

T1 (x2(d))T1(d)

T1(x2(d))− T1(d)

a2) T2 > T ∗
2 = (l + 2)

T2

(
µ2

h1

)
T2(d)

T2

(
µ2

h1

)
− T2(d)

Then, system (3.1) exhibits chaotic dynamics on m× l symbols.
In terms of the dynamical properties of the solutions of (1.1) our result

reads as follows. Let k1 = ⌊ T1

T1(x2(d))
⌋ and k2 = ⌊ T2

T2(µ2/h1)
⌋. Let s := (si)i∈Z =

(pi, qi)i∈Z be an arbitrary two-sided sequence with 0 ≤ pi ≤ m− 1 and 0 ≤ qi ≤
l− 1 for each i ∈ Z. Then, there exists a solution ũ(·) of equation (1.2) with the
following properties.

-when t ∈ [iT, iT + T1], ũ(t) describes an elliptic orbit (which depends on
i) passing k1 + pi + 2 times from the apocenter and k1 + pi + 1 times from the
pericenter;

- when t ∈]iT + T1, (i+ 1)T [, ũ(t) describes an elliptic orbit (which depends
on i) passing k2 + qi + 1 times from the apocenter and k2 + qi + 2 times from
the pericenter.

Moreover, if the sequence si is k-periodic (for some k ≥ 1), namely, si+k = si
for all i ∈ Z, then there exists at least one solution ũ(·) with the properties
described above and such that ũ(t + kT ) = ũ(t) , for each t ∈ R. This result is
stable with respect to the small perturbations considered in Theorem 2
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Figure 5.1: Geometry of linking considered in Theorem 3

Proof. The proof is similar to the one of Theorem 2, and therefore we will just

outline it, pointing out the main differences. Fixed d ∈
]
µ2

h1
, µ2

h2

[
, we construct a

first annulus A1 with inner boundary given by the cycle of (5.1) passing through
(d, 0), and outer boundary given by the cycle of (5.1) passing through (x2(d), 0).
A second annulus A2 is constructed by taking the cycles of (5.2) passing through

(d, 0) and (µ
2

h1
, 0) as inner and outer boundaries respectively (see Figure 5.1) By

construction, such annuli are linked and the intersection is composed by two
topological rectangles, P in the upper half plane and Q in lower half plane. The
orientation considered on these rectangles is the same than the one considered
in Theorem 2. Namely, P is oriented choosing the “up” and “down” sides and Q
is oriented choosing its “left” and “right” sides. Consider now polar coordinates

with center in (µ
2

h1
, 0) with angular coordinate θ increasing in the clockwise sense

and such that θ ∈ [0, π] for the points in P .
The twist condition a1) guarantees that the gap between the angular coor-

dinates of the image through φ1 of the endpoints of any curve γ in P joining
its ”up” and ’down” sides is greater than 2mπ (see e.g. [8][proof of Theorem
4.1 with L1

int = L1
out = 1/2]). As a consequence, φ1(γ) contains m distinct sub

arcs included in Q and joining its ”left” and ”right” sides. Actually, the angular
coordinate of the image of the endpoint of γ on the ”up” side, on the slower
cycle, lies in [2πk1, 2πk1 + 2π[ whereas the angular coordinate of image of the
endpoint of γ on the ”down” side, on the faster cycle, is greater or equal than
2πk1 + 2(m + 1)π. Hence, if we denote by n1(z) the number of zeros of the y
component of the solution of (Eq1) associated to the initial condition z, then
the sets

Hi = {z ∈ P : φ1(z) ∈ P and n1(z) = 2k1 + 2i+ 3}, i = 0, · · ·m− 1,

are non empty disjoint compact subsets of P . Moreover, (Hi, φ1) : P̂ ≎−→Q̂, for
i = 0, . . . ,m − 1 and assumption (Hφ1

) of Theorem 1 is satisfied. Similarly, if
we denote by n2(z) the number of zeros of the y component of the solution of
(Eq2) associated to the initial condition z, then condition a2) guarantees that

18



Figure 5.2: Geometry of the linking considered in Theorem 4

the sets

Kj = {z ∈ Q : φ2(z) ∈ Q and n2(z) = 2k2 + 2j + 3}, j = 0, · · · l − 1,

are non empty disjoint compact subsets of Q and that (Kj , φ2) : Q̂ ≎−→Q̂, for
j = 0, . . . , l − 1 and assumption (Hφ2

) of Theorem 1 is satisfied. We conclude
that φ = φ2 ◦ φ1 induces chaotic dynamics on m× l symbols in

H∗ :=
⋃

i=0,...,m−1

j=0,...,ℓ−1

H′
i,j with H′

i,j := Hi ∩ φ−1
1 (Kj).

The dynamic properties of the chaotic solutions and the stability of the result
with respect to small perturbations follow as in Theorem 2.

In Theorem 4 we consider the remaining case, namely 2h2 ≤ h1. In this
setting, a first annulus B1 is constructed with the cycles of (5.1) passing trough
(d, 0) and (x2(d), 0) which are, respectively its inner and outer boundary. A
second set B2 is limited by the cycle of (5.2) through (d, 0) which is its inner
boundary and by the parabolic orbit of (5.2) which is its outer boundary (see
Figure 5.2). This set is a topological annulus

Theorem 4. Let us suppose that h1 ≥ 2h2. For a fixed d ∈
]
µ2

h1
, µ2

h2

[
, let us

assume that

b1) T1 > T ∗
1 = (m+ 2)

T1 (x2(d))T1(d)

T1(x2(d))− T1(d)

b2) T2 > lT2(d)

Then, system (3.1) exhibits chaotic dynamics on m × l symbols. The dynamic
properties of the chaotic solutions are as the ones described in Theorem 3 choos-
ing k2 = 0. The result is robust with respect to the small perturbations considered
in Theorem 2.
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Remark 1. The particular links chosen in the above results allow to minimize
the lower bound on T which guarantees the existence of chaotic dynamics. In
fact, we observe first that the previous conditions can be written in terms of the
parameters of the system. More precisely, for values d1, d2 which correspond to
cycles of (Eqi), i = 1, 2, with d1 identifying the slower cycle, we have

Λi(d1, d2) =
Ti(d1)Ti(d2)

Ti(d1)− Ti(d2)
=

πhi√
2

1

Fi(d2)3/2 − Fi(d1)3/2
, i = 1, 2. (5.4)

Then, fixed µ and hi, i = 1, 2 the continuous function

τ∗(d) = (m+ 2)Λ1(x2(d), d) + (l + 2)Λ2(
µ2

h1
, d)

d ∈]µ2

h1
, µ2

h2
[ provides a lower bound for the period T for which chaotic dynamics

occurs in Theorem 3. We can minimize this lower bound by observing that, since

lim
d→µ2

h1

τ∗(d) = lim
d→µ2

h2

τ∗(d) = +∞,

there exists d∗ ∈]µ2

h1
, µ2

21
[ which is a minimum point for τ∗ in ]µ

2

h1
, µ2

21
[. A similar

argument applies to Theorem 4 by minimizing the function

τ∗(d) = (m+ 2)Λ1(x2(d), d) + l
πh2√
2

1

[F2(d)]
3
2

in the interval ] µ2

2h2
, µ2

h2
[.

6 Chaotic solutions of the Kepler problem with

small angular momentum

This last section is devoted to show that, as a consequence of the results of
Sections 4 and 5, chaotic solutions may be found in the set of solutions with
small angular momentum. As mentioned in the introduction, the rotational
symmetry of the system implies that the angular momentum µ = |u(t) ∧ u̇(t)|
is a conserved quantity of the solutions. From now on, we denote by Uµ the set
of solutions of system (1.1) with angular momentum µ. Essentially, both the
results of this section follows by observing that the inequalities of theorems 2,
3 and 4 may be satisfied for T1 and T2 fixed by choosing µ sufficiently small.

In particular, the explicit dependence of T ∗
1 ≡ T ∗

1 (µ, T2,m, h1, h2) on µ in
Theorem 2 can be exploited to obtain the following result.

Corollary 1. Let h(t) be given by (1.3) with h1 > 0 > h2. Then, for every
positive integer m ≥ 2, there exists µ∗

m such that if 0 < µ < µ∗
m, the set Uµ of

solutions of system (1.1) exhibits chaotic dynamics on m symbols. The dynamic
properties of the solutions are as in in Theorem 2 and are stable with respect to
the small perturbations considered in there.
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Proof. From the proof of Theorem 2 (see (4.4)), we have that

T ∗
1 = mT (C) = πh1√

2
[Fh1

(d)]−3/2,

where µ2

2h1
< d < µ2

h1
must be chosen sufficiently close to µ2

2h1
. Then, we take

d =
µ2

2h1
(µ+ 1).

Taking this choice, some easy computations give

T ∗
1 =

mπ

4h2
1

(µ+ 1)3µ3/2.

From here, it is evident that

lim
µ→0+

T ∗
1 = 0,

therefore, T ∗
1 < T1 for µ small enough and Theorem 2 applies.

Note that Corollary 1 provides chaotic behaviour of solutions with small
angular momentum, but we can not provide an explicit bound on how small it
should be. However, an explicit quantitative estimate of the smallness of µ can
be given in our last result, which deals with the case h1 > h2 > 0 and which is
a direct consequence of theorems 3 and 4.

Corollary 2. Let h(t) be given by (1.3) with h1 > h2 > 0. Then, for every
positive integers m, l ≥ 2, there exists an explicitly computable number µ∗

m,l > 0
such that if 0 < µ < µ∗

m,l, the set Uµ of solutions of system (1.1) exhibits
chaotic dynamics on m× l symbols. The dynamic properties of the solutions are
as in Theorem 3 and Theorem 4. This result is stable with respect to the small
perturbations considered in Theorem 2.

Proof. We will focus on the case h1 < 2h2, since the computations for the
remaining case h1 ≥ 2h2 are analogous. Following Remark 1, conditions a1)−a2)
of Theorem 3 read

T1 > T ∗
1 = (m+ 2)Λ1(x2(d), d), T2 > T ∗

2 = (l + 2)Λ2

(
µ2

h1
, d

)
, (6.1)

where d ∈]µ2

h1
, µ2

h2
[. To find an explicit expression, we may choose the middle

point of the interval, d = µ2

2h1h2
(h1 + h2). Then, some simple computations give

x2(d) =
h2

F2(d)
− d =

µ2

2h2
2

(h1 + h2).

Now, using the formulas (5.4) and (5.3), tedious but elementary computations
lead to

Λ1(x2(d), d) =
πh1

4

(h1 + h2)
3µ3

h
9/2
1 h

3/2
2 − h3(h2

1 + h1h2 − h2
2)

3/2
,
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and

Λ2

(
µ2

h1
, d

)
=

2πh2(h1 + h2)
3µ3

(h1 + h2)3(2h1h2 − h2
1)

3/2 − 8(h1h3
2)

3/2
.

Therefore, (6.1) holds if and only if

µ3 < H1 :=
4T1

(m+ 2)πh1(h1 + h2)3

[
h
9/2
1 h

3/2
2 − h3(h2

1 + h1h2 − h2
2)

3/2
]
,

and

µ3 < H2 :=
T2

(l + 2)2πh2(h1 + h2)3

[
(h1 + h2)

3(2h1h2 − h2
1)

3/2 − 8(h1h
3
2)

3/2
]
.

Then, we finish by defining µ∗
m,l = min{H1/3

1 , H
1/3
2 }.
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