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Abstract

A class of linear operators L+λI between suitable function spaces is
considered, when 0 is an eigenvalue of L with constant eigenfunctions.
It is proved that L + λI satisfies a strong maximum principle when
λ belongs to a suitable pointed left-neighborhood of 0, and satisfies a
strong uniform antimaximum principle when λ belongs to a suitable
pointed right-neighborhood of 0. Applications are given to various type
of ordinary or partial differential operators with periodic or Neumann
boundary conditions.
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1 Introduction

Consider the problem

∆u + λu = f(x) in D, Bu = 0 in ∂D, (1)

where D is a smooth bounded domain in RN and Bu = 0 represents either
the Dirichlet or Neumann homogenous boundary conditions.

It is a standard consequence of the maximum principle (MP) that
if λ < λ1, where λ1 represents the principal eigenvalue of −∆ under the
corresponding boundary conditions, and if f is a nonnegative function, then
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the solution u of (1) is nonpositive in D. Indeed, a stronger conclusion
holds for (1), namely a strong maximum principle (SMP) : if f is
nonnegative and not identically zero, then u is negative in D. We refer to
the classical book [29] for more details and early references, to [4] for a
general statement, and to the recent monograph [30] for more details on
this important tool. Those references essentially deal with partial differential
equations or systems of elliptic or of parabolic type.

In 1979, Clément and Pelletier [12] investigated the problem (1) in the
situation where λ > λ1 and proved the following anti-maximum princi-
ple (AMP) : Given a nonnegative function f, there exists δ = δ(f) > 0
such that if λ1 < λ < λ1 + δ, then any solution u of (1) is nonnegative
in D. Furthermore, a strong anti-maximum principle (SAMP) holds
in this case : if f is nonnegative and not identically zero, then u is pos-
itive in D. They also showed in [12] that δ can be taken independent
of f for the Neumann problem in dimension N = 1, in which case one
speaks of a uniform antimaximum principle (UAMP). Recent work
with those (possibly strong) AMP and UAMP for linear elliptic operators
with various boundary conditions include the papers of Hess [21] (AMP
for elliptic problems with weight), de Figueiredo-Gossez [15] (connection
to the Fučik spectrum), Birindelli [5] (irregular domains), Takač [35] (MP
and AMP for abstract linear elliptic boundary value problems in strongly
ordered space), Cabada-Lois [10] (UAMP for higher order ordinary differ-
ential operators with periodic boundary conditions), Sweers [34] (exact Lp

space where f should be taken), Pinchover [28] (MP and AMP via per-
turbation theory of positive solutions), Alziary-Fleckinger-Takáč [1] (MP
and AMP for Schrödinger equation in R2), Godoy-Gossez-Paczka [17, 18]
(AMP and UAMP for Dirichlet, Neumann or Robin problems with weight),
Clément-Sweers [13, 14] (UAMP for second or higher order elliptic oper-
ators with homogeneous boundary conditions), Stavrakakis-de Thélin [33]
(AMP for elliptic equation on RN ), Grunau-Sweers [20] (optimal conditions
for AMP or UAMP for polyharmonic boundary value problems), Barteneva-
Cabada-Ignatyev [3] and Reichel [31] (MP and AMP for second order ordi-
nary differential operators with variable coefficients), Arcoya-Gámez [2] and
Shi Junping [32] (proofs of AMP using bifurcation) and others.

In the case of Neumann problem in dimension one

u′′ + λu = f(x) in (0, π), u′(0) = 0 = u′(π)

zero is the principal eigenvalue, and, if f ≥ 0 on (0, π), the SMP tells that
u < 0 on (0, π) when λ < 0, and the SUAMP tells that u > 0 on (0, π) when
λ ∈ (0, 1/4]. In other words, λu > 0 when λ ∈ (−∞, 0) ∪ (0, 1/4].
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Less standard maximum principles have been obtained recently for the
time-periodic or the time-bounded solutions of telegraph equations of the
form

utt + cut −∆u + λu = f(t, x) (2)

with periodic spatial boundary conditions (see [27, 23, 24]). In the case of
time-periodic solutions, a SMP holds for λ ∈ (0, λ+], for some finite λ+ > 0
depending upon c. A natural question is the existence of an anti-maximum
principle for such a problem.

The aim of this paper is to identify a class of abstract linear operators
L + λI acting on some function spaces, λ = 0 being an eigenvalue of L with
constant eigenfunctions, for which a MP holds when λ ∈ [λ−, 0), a SMP
holds when λ ∈ (λ−, 0), a UAMP holds when λ ∈ (0, λ+] , and a SUAMP
holds when λ ∈ (0, λ+), for some −∞ ≤ λ− < 0 < λ+ ≤ +∞. A precise
statement is given in Theorem 1 of Section 2. The proof is based upon a
detailed study of the resolvent operator Rλ of L.

Various applications are given in Section 3, namely to linear differential
operators of arbitrary order with constant coefficients and periodic bound-
ary conditions, first order difference equations with periodic boundary con-
ditions, a two-point boundary value problem of order four, polyharmonic
operators with Neumann-type boundary conditions on a smooth bounded
domain of RN , and some hyperbolic operators on a torus, generalizing the
telegraph equation with periodic boundary conditions in space and time.
This shows in particular that, in this case, a SUAMP holds in addition to
the SMP proved in [27].

2 Abstract setting of the results

Let Ω be a compact metric space and let µ be a positive and bounded
measure over Ω. The notion of measure is understood as in [16]. We shall
work with the Banach spaces C = C(Ω) with its standard norm ‖u‖∞ =
maxω∈Ω |u(ω)| and L = L1(Ω, µ) with its standard norm ‖f‖1 =

∫
Ω |f |dµ.

Given f ∈ L we employ the notations

f =
1

µ(Ω)

∫

Ω
fdµ, f̃ = f − f, L̃ = {f ∈ L | f = 0}, C̃ = C ∩ L̃.

Let L : Dom(L) ⊂ C → L be a linear operator satisfying

Ker(L) = {constant functions}, Im(L) = L̃ (3)
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and such that equation
Lu = f̃

has a unique solution ũ ∈ C̃. Moreover assume that

‖ũ‖∞ ≤ K‖f̃‖1 (4)

where K only depends upon L. Thus L is a closed Fredholm operator of
index zero.

Definition 1 Given λ ∈ R\{0}, the operator L + λI satisfies a maximum
principle if for each f ∈ L, the equation

Lu + λu = f, u ∈ Dom(L) (5)

has a unique solution and λu ≥ 0 for any f ≥ 0. The maximum principle
is said to be strong if λu(x) > 0 for any x ∈ Ω when f ≥ 0 and f(x) > 0 in
a subset of Ω with positive measure.

Such a definition includes both maximum and anti-maximum principles. For
example, if Lu = u′′ with the Neumann boundary conditions on Ω = [0, 1],
our definition corresponds to a maximum principle when λ < 0 and to an
anti-maximum principle when λ > 0.

The main result of this paper is the following

Theorem 1 Assume that conditions (3) and (4) hold. Then there exist
numbers λ− and λ+, with

−∞ ≤ λ− < 0 < λ+ ≤ +∞

such that L+λI has a maximum principle if and only if λ ∈ [λ−, 0)∪(0, λ+].
Moreover if λ ∈ (λ−, 0) ∪ (0, λ+) the maximum principle is strong.

Before giving the proof of Theorem 1, we introduce some notations, and
prove three lemmas. The inverse of L + λI, whenever it exists, is called
the resolvent of L, and is denoted by Rλ, so that Rλ : L → C. The partial
resolvent for λ = 0, denoted by R̃0, is the operator R̃0 : L̃ → C̃, defined by

ũ = R̃0f̃ ⇐⇒ Lũ = f̃ .

We know by assumption (4) that R̃0 is continuous.
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Lemma 1 There exist some Λ1 > 0 such that, if λ ∈ [−Λ1, Λ1]\{0}, then
the resolvent Rλ of L exists. Moreover

‖Rλf̃‖∞ ≤
(

‖R̃0‖ eL→eC
1− Λ1‖R̃0‖eC→eC

)
‖f̃‖1 (6)

if f̃ ∈ L̃ , 0 < |λ| ≤ Λ1.

Proof. Split equation (5) in the following way
{

Lũ + λũ = f̃ ,

λu = f.
(7)

Using the partial resolvent of L, the first equation in (7) can be written as

ũ + λR̃0ũ = R̃0f̃ . (8)

Let us observe that R̃0 is also a continuous map when restricted to C̃. If
|λ|‖R̃0‖eC→eC < 1 then I + λR̃0 is invertible from C̃ to C̃ and (8) is solved as

ũ = (I + λR̃0)−1R̃0f̃ .

To finish this lemma, we take 0 < Λ1 < 1

‖ eR0‖ eC→ eC
and obtain from (8), for

|λ| ≤ Λ1,

‖ũ‖∞ − Λ1‖R̃0‖eC→eC‖ũ‖∞ ≤ ‖ũ‖∞ − |λ|‖R̃0‖eC→eC‖ũ‖∞
≤ ‖(I + λR̃0)ũ‖∞ = ‖R̃0f̃‖∞
≤ ‖R̃0‖ eL→eC‖f̃‖1,

and hence

‖ũ‖∞ ≤
(

‖R̃0‖ eL→eC
1− Λ1‖R̃0‖eC→eC

)
‖f̃‖1,

which gives (6).

Lemma 2 There exists Λ2 ∈ (0, Λ1) such that, if 0 < |λ| ≤ Λ2, then L+λI
has a strong maximum principle.
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Proof. If we take f ≥ 0, then f = 1
µ(Ω)‖f‖1, so that, using the second

equation in (7),

λRλ(f + f̃) = f + λRλ(f̃) =
1

µ(Ω)
‖f‖1 + λRλf̃ ≥ 1

µ(Ω)
‖f‖1 − |λ|‖Rλf̃‖∞

and using (6), if 0 < |λ| ≤ Λ1,

λu = λRλ(f + f̃) ≥ 1
µ(Ω)

‖f‖1 − |λ|
(

‖R̃0‖ eL→eC
1− Λ1‖R̃0‖eC→eC

)
‖f̃‖1.

Since ‖f̃‖1 ≤ ‖f‖1 + ‖f‖1 = 2‖f‖1, the result follows by taking

Λ2 < min

{
Λ1,

1− Λ1‖R̃0‖eC→eC
2µ(Ω)‖R̃0‖ eL→eC

}

.

Lemma 3 Assume that L+λ0I has a maximum principle for some λ0 > 0.
Then, for any λ ∈ (0, λ0), L+λI has a strong maximum principle. Moreover
Rλ is defined for any λ ∈ (0, 2λ0) and for any f ∈ L the function λ → Rλf
is analytic.

Proof. A first observation is that the existence of a maximum principle im-
plies the continuity of the resolvent from C → C. Indeed, because of (5),
Rλ01 = 1

λ0
and if f ∈ C, −‖f‖∞ ≤ f ≤ ‖f‖∞. So using the maximum

principle,

−‖f‖∞
λ0

≤ Rλ0f ≤
‖f‖∞

λ0
,

i.e.
‖Rλ0‖C→C =

1
λ0

. (9)

Now, let us take λ ∈ R and write (5) as

Lu + λ0u = (λ0 − λ)u + f,

or, equivalently,
u− (λ0 − λ)Rλ0u = Rλ0f.

This equation is solvable if

‖(λ0 − λ)Rλ0‖C→C < 1,
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which, using estimate (9), holds if
∣∣∣∣
λ0 − λ

λ0

∣∣∣∣ < 1 ⇐⇒ 0 < λ < 2λ0.

Thus equation (5) is solvable in (0, 2λ0).
If now f ∈ L, then Rλ0f ∈ C and

Rλf = [I − (λ0 − λ)Rλ0 ]
−1Rλ0f =

(∑

n∈N
(λ0 − λ)nRn

λ0

)
Rλ0f. (10)

This expression is analytic in λ, and nonnegative if λ < λ0 and f ≥ 0. This
gives the maximum principle. To finish the lemma, it remains to show that
the strong maximum principle holds for any λ ∈ (0, λ0). Take f ≥ 0 with∫
Ω f dµ > 0. Then from (10), if 0 < λ2 < λ1 < λ0, one has Rλ2f ≥ Rλ1f .

Fix any x ∈ Ω and consider the function ϕ(λ) = Rλf(x), λ ∈ (0, λ0]. The
previous remarks imply that this function in non-negative and monotone
non-increasing. From Lemma 2 we know that ϕ(λ) > 0 if λ ∈ (0,Λ2]. We
invoke the analyticity of ϕ in (0, λ0] and conclude that ϕ(λ) > 0 everywhere
in (0, λ0).

Proof of Theorem 1. It is enough to prove the result for λ > 0. For the
case of negative λ it is enough to replace L by −L. From Lemmas 2 and 3
we know that

I+ = {λ > 0 | L + λI has a maximum principle}

is a nonempty interval. Assuming that λ+ = sup I+ is finite, it remains
to prove that λ+ ∈ I+. Take λn ↗ λ+, and select n0 large enough such
that λ+ < 2λn0 . Thus Rλ+ exists and we can apply the identity (10) with
λ0 = λ+ to conclude that un = Rλnf → u = Rλ+f uniformly in Ω. If f ≥ 0
then un ≥ 0 and so u ≥ 0.

A natural question after Theorem 1 is whether there exist some links
between the numbers λ± and the spectrum of −L. To adjust to the usual
notations we consider the resolvent set R of the operator −L, that is

R = {λ ∈ C | L + λI is one-to-one, onto and (L + λI)−1 is continuous}.

As usual in spectral theory the symbol L also denotes the complex extension.
Assuming that λ+ is finite we observe from the proof of Lemma 3 that the
open disk of center λ+ and radius λ+ is contained in R. The same applies
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to the disk centered at λ− and of radius |λ−| when this number is finite. In
particular λ± belong to R and cannot be eigenvalues of −L. Define Σ+ as
the largest positive number such that the open disk of center Σ+ and radius
Σ+ is contained in R. In an analogous way one can define Σ− and it is now
obvious that

Σ− ≤ λ− < 0 < λ+ ≤ Σ+,

with the conventions Σ+ = +∞ if λ+ = +∞, Σ− = −∞ if λ− = −∞. The
next example shows that these estimates are sharp.

Let Ω be the metrizable space composed by two points A and B. We
consider the measure satisfying µ({A}) = α and µ({B}) = β, where α > 0
and β > 0 are real parameters. In this case the spaces C and L can be
identified to R2 with the corresponding norms

‖(x, y)‖∞ = max{|x|, |y|} and ‖(x, y)‖α,β = α|x|+ β|y|.

The operator L : Dom(L) = R2 → R2 is given by the matrix
(

β −β
−α α

)
.

An easy computation shows that Ker(L) is spanned by the vector (1, 1)T

while Im(L) is the line of equation αx + βy = 0, which coincides with L̃.
Also,

(L + λI)−1 =
1

λ(α + β + λ)

(
α + λ β

α β + λ

)

for every λ ∈ R = C \ {0,−(α + β)}.
The maximum principle holds whenever this matrix has non-negative

coefficients. Hence λ+ = ∞ and λ− = −min{α, β}. Since Σ− = −(α+β
2 ) we

obtain the expected inequality Σ− ≤ λ− which is strict except in the case
α = β.

3 Some examples

3.1 Periodic solutions of ordinary differential equations

We discuss the maximum principle for problems of the type
{

u(n) + an−1u
(n−1) + . . . + a1u

′ + λu = f(t)
u 2π-periodic,

(11)

where an−1, an−2, . . . a1 are real coefficients and f is 2π-periodic.
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The space Ω is the quotient group T = R/2πZ and µ is the associated
Haar measure. We normalize the measure so that µ(T) = 2π. This just
means that for any continuous function φ ∈ C(T),

∫

T
φdµ =

∫ 2π

0
φ(s)ds.

The space L = L1(T) is the usual space of periodic functions that are inte-
grable over the period. The operator L will be taken as

Lu = u(n) + an−1u
(n−1) + . . . + a1u

′, u ∈ Dom(L) = Wn,1(T),

where Wn,1(T) is the Sobolev space composed by 2π-periodic functions
which are of class Cn−1 and such that u(n−1) is absolutely continuous. To
guarantee that Ker(L) only contains constant functions we must impose a
condition on the characteristic polynomial

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ,

namely,
p(ki) 6= 0 for each k ∈ Z \ {0}. (12)

To prove that

Im(L) =
{

f ∈ L
∣∣∣∣
∫ 2π

0
f(t)dt = 0

}

we employ the Fredholm alternative. According to this principle the space
Im(L) is composed by those functions f which are orthogonal (in the L2-
sense) to the 2π-periodic solutions of L?u = 0, where L? is the adjoint
operator

L?(v) := (−1)nv(n) + (−1)n−1an−1v
(n−1) + . . . + (−1)a1v

′.

The only 2π-periodic solutions of the adjoint equation are again the con-
stants. Indeed, the characteristic polynomial associated to L? is p?(λ) =
p(−λ) and so condition (12) holds for p? and p simultaneously. When
W̃n,1(T) = {u ∈ Wn,1(T) : u = 0} and L̃1(T) = {f ∈ L1(T) : f = 0}
are endowed with their natural norms, so that they become Banach spaces,
the map

ũ ∈ W̃n,1(T) 7→ ũ(n) + an−1ũ
(n−1) + · · ·+ a1ũ

′ = f̃ ∈ L̃1(T)

is a continuous isomorphism. Therefore the inverse is also continuous and
so the estimate ‖ũ‖W n,1 ≤ K1‖f̃‖1 holds. We are in dimension one and so
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the space W̃n,1(T) is immersed in C̃(T) = {u ∈ C(T) : u = 0}, implying
that ‖ũ‖∞ ≤ K2‖ũ‖W n,1 . These two estimates lead to the L1 − L∞ condi-
tion required for the applicability of Theorem 1 and we obtain maximum
principles for λ positive or negative.

For n = 1 or 2, condition (12) always holds and the numbers λ+ and
λ− can be computed in several ways. They are λ± = ±∞ if n = 1 and
λ+ = 1+a2

1
4 , λ− = −∞ if n = 2. Since every constant is explicit in this

case, we can discuss the relationships with the spectrum of −L and the
numbers Σ±. For n = 1 this spectrum is the sequence λk = ik with k ∈ Z.
It lies on the imaginary axis and so Σ± = ±∞. For n = 2 the spectrum
becomes λk = k2 − ia1k, k ∈ Z. A computation shows that Σ− = −∞,
Σ+ = 1+a2

1
2 = 2λ+.

The determination of the exact value of λ± is more delicate for n ≥ 3
and we refer to [7, 8, 9, 10, 25, 26]. See also [11] for Neumann boundary
conditions and [3, 31] for second order operators with variable coefficients.

3.2 Periodic solutions of difference equations

Let ∆um := um+1 − um denote the forward difference operator, and, given
the positive integer n, let us consider the difference equation with periodic
boundary conditions

∆um + λum = fm (0 ≤ m ≤ n− 1), u0 = un, (13)

where λ ∈ R and fm ∈ R (0 ≤ m ≤ n − 1). Problem (13) is equivalent to
the problem

∆um + λum = fm (0 ≤ m ≤ n− 2), u0 − un−1 + λum−1 = fn−1.

If Ω is the metrizable space composed of n points A0, A2, . . . An−1, and µ
the measure on Ω satisfying µ({Am}) = 1 (0 ≤ m ≤ n − 1), then C can be
identified with Rn = {u = (u0, . . . , un−1)} endowed with the norm ‖u‖∞ =
max0≤m≤n−1 |um|, and L can be identified with Rn endowed with the norm
‖u‖1 =

∑n−1
m=0 |um|. It is easy to see that the operator L : Dom(L) = Rn →

Rn defined by

L(u) = (∆u0, ∆u1, . . . ,∆un−2, u0 − un−1)

is such that

Ker(L) = {(c, . . . , c) : c ∈ R}, Im(L) =

{
y ∈ Rn :

n−1∑

m=0

ym = 0

}
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so that Assumption (3) holds, with u := 1
n

∑n−1
m=0 um, and Assumption (4) is

a direct consequence of the finite dimension of C̃ and L̃. Thus, all conditions
of Theorem 1 hold for (13).

To obtain more information about the corresponding λ− and λ+, notice
that problem (13) is equivalent to the linear algebraic system in Rn

um+1 + (λ− 1)um = fm (0 ≤ m ≤ n− 2), u0 + (λ− 1)un−1 = fn−1.(14)

Such a system is uniquely solvable if and only if (1− λ)n 6= 1, and a direct
step-by-step computation gives, for those λ the solution

um =
1

1− (1− λ)n

[
m−1∑

k=0

(1− λ)m−k−1fk +
n−1∑

k=m

(1− λ)n+m−k−1fk

]

(0 ≤ m ≤ n− 1).

Consequently, if fm ≥ 0 for all 0 ≤ m ≤ n − 1, we will have um ≥ 0 for all
0 ≤ m ≤ n− 1 if 1− (1− λ)n and all powers of (1− λ) have the same sign.
The only possible case is when they are both positive, i.e. when 0 < λ < 1.
Similarly, we will have um ≤ 0 for all 0 ≤ m ≤ n − 1 if 1 − (1 − λ)n and
all powers of (1 − λ) have opposite signs. The only possible case is where
1 − (1 − λ)n ≤ 0 and all powers of (1 − λ) are positive, i.e. when λ < 0.
Thus for problem (13)

−∞ = λ− < 0 < λ+ = 1.

So we necessarily have Λ− = −∞. Now, the (complex) spectrum of −L
is the set of λ ∈ C such that (1 − λ)n = 1, and hence is made of the n
eigenvalues

λm = 1− e
2πmi

n (0 ≤ m ≤ n− 1),

which are located on the circle of center 1 and of radius 1. This implies that
Λ+ = 1.

Notice the difference between the periodic problem for difference equa-
tions (13) and the corresponding periodic problem for an ordinary differen-
tial equation

u′ + λu = f(t), u(0) = u(2π) (15)

considered in Subsection 3.1. We had found in this case

−∞ = Λ− = λ−, λ+ = Λ+ = +∞.

The difference is related to the nature of the spectra of the two problem :
a purely imaginary one for (15), and a spectrum on the circle ∂B(1, 1) for
(13).
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3.3 A less standard two-point boundary value problem

We now derive a maximum principle for the boundary value problem
{

u′′′′ + λu = f(t)
u′(0) = u′′(0) = u′(π) = u′′(π) = 0.

(16)

To this end we consider the space Ω = [0, π] with the measure dµ = v(t)dt,
where v(t) := t(π − t). This choice of µ leads to the space of integrable
functions

L =
{

f : [0, T ] → R
∣∣∣∣ f is measurable and

∫ π

0
|f(s)|v(s)ds < ∞

}

with the norm
‖f‖1 =

∫ π

0
|f(t)|v(t)dt.

The operator Lu = u′′′′ is defined on the space Dom(L) composed by those
functions u ∈ C3[0, π] such that

u′(0) = u′′(0) = u′(π) = u′′(π) = 0

and the fourth derivative u′′′′ belongs to L. This derivative is understood in
the sense of distributions. It is easy to check that

Ker(L) = {constant functions}.

To compute the range we split the problem

Lu = f, u ∈ Dom(L), f ∈ L

in two second order problems. First we observe that z = u′′ satisfies
{

z′′ = f(t)
z(0) = z(π) = 0.

This Dirichlet problem has the unique solution u(t) =
∫ π
0 G(t, s)f(s)ds with

G(t, s) =

{
(s−π)t

π 0 < t ≤ s
(t−π)s

π s < t < π

Notice that |G(t, s)| ≤ v(s)
π and so the integral makes sense if f ∈ L.

12



Next we must solve the Neumann problem
{

u′′ = z(t)
u′(0) = u′(π) = 0.

This is solvable if and only if

0 =
∫ π

0
z(t)dt =

∫ π

0
f(s)

∫ π

0
G(t, s)dtds = −1

2

∫ π

0
f(s)v(s)ds.

From here we deduce that Im(L) is precisely L̃. When f ∈ L̃ the Neumann
problem has a continuum of solutions but only one of them lies in C̃. This
fact leads to the unique solvability of

Lũ = f̃ , ũ ∈ C̃, f̃ ∈ L̃.

The above discussions imply in particular that ‖z‖∞ ≤ 1
π‖f‖1 and from here

it is easy to arrive at the estimate ‖ũ‖∞ ≤ K‖f̃‖1. We are in the conditions
of Theorem 1 and so we have obtained a maximum principle for (16).

3.4 The polyharmonic operator with Neumann boundary
conditions

The classical maximum principles for the Laplace operator cannot be proved
using our abstract setting. To illustrate the reasons for this obstruction we
consider the Neumann problem

{
∆u + λu = f(x), x ∈ D
∂u
∂n = 0 on ∂D

(17)

where D ⊂ RN , N ≥ 2, is a bounded domain of class C2. From [29], the
maximum principle holds for λ < 0 but, as shown in [15], it is not valid
for any λ > 0 (no UAMP). That is, λ− = −∞, λ+ = 0, a situation which
cannot occur when Theorem 1 is applicable. Indeed, if we would try to
apply our abstract setting we would be stopped after observing that there
is no L1 − L∞ regularity for the problem

{
∆u = f̃(x), x ∈ D
∂u
∂n = 0 on ∂D.

(18)

Given f̃ ∈ L1(D) with
∫
D f̃ = 0, there exists a unique solution with

∫
D ũ = 0.

In general this solution will not be continuous but it belongs to Lq(D) with
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q < N
N−2 . This can be proved using the duality method as employed in the

final remarks of Chapter IX in [6]. This method also leads to the estimate
||ũ||q ≤ K||f̃ ||1. By a solution of (18) we understand a function u ∈ Lq(D)
such that ∫

D
u∆φ =

∫

D
f̃φ

for each φ ∈ C∞(D) with ∂φ
∂η = 0 on ∂D.

Assume now that k is an integer with

2k > N

and consider the problem
{

∆ku = f̃(x), x ∈ D
∂u
∂n = ∂

∂n∆u = ... = ∂
∂n∆k−1u = 0 on ∂D

where ∆k = ∆ ◦ . . .(k) ◦ ∆ is the polyharmonic operator. This problem is
equivalent to the system





∆vi = vi+1, in D, i = 0, 1, . . . , k − 1
∂vi
∂n = 0 on ∂D, i = 0, 1, . . . , k − 2
v0 = u, vk = f̃ .

Now it is easy to prove that if f̃ ∈ L̃1(D) then there exists a unique solution
ũ ∈ C̃(D) with ||ũ||∞ ≤ K||f̃ ||1. To prove this we select q satisfying

N

N − 2
> q,

1
q
− 2(k − 1)

N
< 0.

The second inequality is imposed to guarantee that a certain Sobolev space
is contained in C(D). From the previous discussion for (18) we know that
vk−1 ∈ Lq(D) and, by standard elliptic regularity, u ∈ W 2(k−1),q(D) ⊂
C(D). This discussion shows that Theorem 1 can be applied to the problem
below when k > 2N ,

{
∆ku + λu = f(x), x ∈ D
∂u
∂n = ∂

∂n∆u = ... = ∂
∂n∆k−1u = 0 on ∂D

In this case Ω = D, µ is the Lebesgue measure and Lu = ∆ku. The definition
of the domain of L is induced by the formulation of the equation as a system
and the duality method. Namely, Dom(L) is composed by those functions
u ∈ C(D) such that there exist v0 = u, v1, . . . , vk ∈ L1(D) satisfying

∫

D
vi∆φ =

∫

D
vi+1φ, I = 0, 1, . . . , k − 1

14



for each φ ∈ C∞(D) with ∂φ
∂η = 0 on ∂D. Notice that Lu = uk.

Maximum or anti-maximum principles for the polyharmonic operator
and Dirichlet boundary conditions have been obtained in [13, 14, 19, 20, 22].

3.5 Some hyperbolic equations on a torus

The space Ω is here the two dimensional torus T2 = (R/2πZ)2 with the
associated Haar measure µ. It is assumed that µ(T2) = (2π)2 and generic
points on the torus are denoted by (t, x) with t = t + 2πZ, x = x + 2πZ.

We consider the differential operator

Lu = ∂2
t u + c∂tu + (−1)γ∂2γ

x u

acting on doubly periodic functions u : T2 → R, u = u(t, x), c > 0, and
γ = 1, 2, ... This operator is related to the model of telegraph transmission
for γ = 1 and to the vibration of beams for γ = 2. The derivatives of u are
understood as distributions on the torus so that

< Lu, φ >=
∫

T2

uL?φ

for each φ ∈ D(T2) = C∞(T2), where L? = ∂2
t−c∂tu+(−1)γ∂2γ

x is the adjoint
operator. We consider L as an operator from C = C(T2) to L = L1(T2) with

Dom(L) = {u ∈ C(T2) | Lu ∈ L1(T2)}.
We claim that all the conditions of the abstract setting hold and so we

obtain maximum principles for the doubly periodic solutions of

∂2
t u + c∂tu + (−1)γ∂2γ

x u + λu = f(t, x) in D′(T2)

whenever λ ∈ [λ−, λ+] \ {0}. For γ = 1 this is the maximum principle found
in [27]. The result seems to be new for γ = 1 and λ ∈ [λ−, 0) or for γ ≥ 2.

To justify that L satisfies the conditions of the abstract setting we will
assume that γ ≥ 2. The case γ = 1 follows from Proposition 4.4 in [27].
First we state an auxiliary result for equation

∂2
t u + c∂tu + (−1)γ∂2γ

x u +
c2

4
u = f(t, x) in D′(T 2) (19)

Lemma 4 For each f ∈ L1(T2) equation (19) has a unique solution u in
C(T2). Moreover the resolvent operator

R : L1(T2) → C(T2), f → u

is compact if γ ≥ 2.
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Notice that in the abstract setting the map R corresponds to the resolvent
R c2

4

.

We postpone the proof of this lemma, and first discuss how to apply it.
By selecting the test function φ(t, x) = ei(nt+mx) it is easy to conclude that

Ker(L) = {constant functions}

The choice φ ≡ 1 lead to
Im(L) ⊂ L̃.

It remains to prove that this inclusion is indeed an equality and that the
generalized inverse is continuous as a map from L to C. To this end we
observe that the equation Lu = f can be rewritten as Lu + c2

4 u = f + c2

4 u
and, after an application of Lemma 4 we obtain the equivalence

Lu = f ⇐⇒
(

I − c2

4
R

)
u = Rf.

With the symbol R we also indicate the restriction of R to C. This restriction
becomes a compact endomorphism of C. The previous discussion implies
that

Ker
(

I − c2

4
R

)
= {constant functions}, Im

(
I − c2

4
R

)
⊂ C̃.

To obtain the last inclusion we observe that R(L̃) ⊂ C̃ . Since R is compact
we notice that I − c2

4 R is a Fredholm operator of zero index. This implies
that Im(I − c2

4 R) = C̃ and so Im(L) = C̃. The continuity of the generalized
inverse can be deduced as a consequence of the general theory of compact
operators.

It is possible to obtain some upper estimates of the numbers |λ−| and
λ+. The spectrum of L is given by

σ(L) = {n2 −m2γ + cin | (n,m) ∈ Z× Z}

implying that −1
2 ≤ λ− < 0 < λ+ ≤ c2+1

2 .

We conclude with the

Proof of Lemma 4. The uniqueness follows from Fourier analysis. Again one
uses ei(nt+mx) as test functions. To prove the existence of a solution and the
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compactness of the resolvent we construct a fundamental solution of L+ c2

4 I
on the torus. This is a function U ∈ C(T2) satisfying

LU +
c2

4
U = δ in D′(T2).

Here δ ∈ D′(T2) is the Dirac measure concentrated at (0, 0) that is

< δ, φ >= φ(0, 0) for each φ ∈ D(T2).

Once the function U has been constructed the solution of
(
L + c2

4 I
)

u = f

can be expressed as a convolution on T2, namely

u(t, x) = (U ∗ f) (t, x) =
∫

T2

U(t− τ, x− ξ)f(τ, ξ)dτdξ

The compactness of Rf = U ∗ f is now a consequence of Ascoli-Arzelá’s
theorem.

After this discussion it remains to construct U . It is defined as the
uniformly convergent series U =

∑∞
n=0 Un, where Un ∈ C(T2)∩C2([0, π]×R)

satisfies

LUn +
c2

4
Un = 0 on [0, 2π]× R

and
∂Un

∂t
(0+, x)− ∂Un

∂t
(2π−, x) =

{
1
2π if n = 0
1
π cosnx if n > 1.

Assuming by now that the function Un has been constructed we explain why
U is the fundamental solution. Integration by parts leads to

∫

T2

(
L∗φ +

c2

4
φ

)
Un =

∫ 2π

0

(
∂Un

∂t
(0+, x)− ∂Un

∂t
(2π−, x)

)
φ(0, x)dx

and so
∫

T2

(
L∗φ +

c2

4
φ

)
U =

1
2π

∫ 2π

0
φ(0, x)dx +

1
π

∞∑

n=1

∫ 2π

0
φ(0, x) cosnxdx

= φ(0, 0)

The last identity follows from the Fourier expansion of φ(0, ·).
Finally we give an explicit formula for Un. For n ≥ 1, Un is the periodic

extension of

Un(t, x) =
e−ct/2

π(1− e−cπ)
sinnγt cosnx

nγ
, (t, x) ∈ [0, 2π]× R.
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For n = 0 the function U0 does not depends on x and is defined as the
periodic extension of solution of the boundary value problem

{
u′′ + cu′ + c2

4 u = 0, t ∈ [0, 2π]
u(0) = u(2π), u′(0+) = u′(2π−) + 1

2π .

Namely,

U0(t) =
[

e−cπ

(1− e−cπ)2
+

t

2π(1− e−cπ)

]
e−ct/2, t ∈ [0, 2π].
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