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Abstract

In this paper we study the existence and qualitative properties
of travelling waves associated to a nonlinear flux limited partial diffe-
rential equation coupled to a Fisher–Kolmogorov–Petrovskii–Piskunov
type reaction term. We prove the existence and uniqueness of finite
speed moving fronts of C2 classical regularity, but also the existence
of discontinuous entropy travelling wave solutions.
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1 Introduction and main results

The aim of this paper is to analyze the existence of travelling waves associated
to a heterogeneous nonlinear diffusion partial differential equation coupled
to a reaction term of Fisher–Kolmogorov–Petrovskii–Piskunov type. The
nonlinear diffusion term has been motivated in different contexts and from
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different points of view (see the pioneering work [29]). Also, it has been de-
duced in the Monge-Kantorovich’s optimal mass transport framework where
it is usually called the relativistic heat equation [15] or in astrophysics [26].
The existence and uniqueness of entropy solutions for the nonlinear parabolic
flux diffusion was proved in [4], while in [5] the finite speed of propagation
was analyzed. The resulting reaction–flux–limited–diffusion system exhibits
new properties compared to the classical reaction coupled to the linear diffu-
sion equation, such as the existence of singular travelling waves which opens
new perspectives of application to biology or traffic flow frameworks.

Reaction–diffusion systems consist in mathematical models describing the
dynamics of the concentration of one or more populations distributed in
space under the influence of two processes: local reactions in which the pop-
ulations interact with each other, and diffusion which provokes the popu-
lations to spread out in space. In the context of reaction-diffusion the
notion of population can be understood in a wide sense such as particles
or concentrations in chemical processes, but also examples can be found
in biology (cells, morphogens), geology, combustion, physics and ecology
or more recently in computer science or complex systems, see for instance
[16, 18, 21, 24, 25, 27, 30, 32, 34]. This fact has motivated the attention
by both formal and rigorous work on a variety of applications starting from
linear diffusion of type

∂u

∂t
= ν ∆u+ f(u), u(t = 0, x) = u0(x), (1)

where ν is the so called diffusion coefficient and f represents the reaction
term. Cooperative behavior often stems from diffusive coupling of nonlinear
elements and reaction-diffusion equations provide the prototypical descrip-
tion of such systems.

In many applications and in particular in complex systems reaction-
diffusion equations often provide a natural mathematical description of these
dynamical networks since the elements of the networks are coupled through
diffusion in many instances. The correct description of reaction-diffusion
phenomena requires a detailed knowledge of the interactions between indi-
viduals and groups of individuals. This line of research motivates the study
of nonlinear cooperative behavior in complex systems [9], which is a closed
subject interconnected with reaction–diffusion systems. There is a wide li-
terature raising the universality of application of reaction–diffusion systems.
Nevertheless, there are limitations to the reaction-diffusion description. In
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biochemical networks constituted by small cellular geometries a macroscopic
reaction-diffusion model may be inappropriate. In some circumstances the
coupling among elements is not diffusive or the diffusive processes are non-
linear, which will strongly influence the dynamical behavior of the network.
In [31] it is proposed a nonlinear degenerate density-dependent diffusion mo-
tivated by the fact that there are biological (mating, attracting and repelling
substances, overcrowding, spatial distribution of food, social behavior, etc.)
and physical (light, temperature, humidity, etc.) factors which imply that
the probability is no longer a space-symmetric function, i.e., it looses the
homogeneity, and so linear diffusion is not a good approach. This hetero-
geneity property of the diffusion operator comes from the heterogeneous char-
acter of the equation and/or from the underlying domain, we refer also to
[12, 13, 10, 11]. The same problems with the universality in the applicability
occurs when we have not a mean-field interaction between particles or when
the particles are dilute or large with respect to the vessel or the media where
they are moving [6, 30]. In these cases the linear diffusion approximation
might not be the most appropriate. The above processes probably require to
incorporate one or various phenomena not included in linear diffusion such
as the finite speed of propagation of matter or the existence of nonsmooth
densities (singular travelling waves), for example. The mathematical argu-
ment justifying that even if the solution has not compact support the size
(mass or concentration, depending on the case dealt with) is very small out
of some ball with large radius could be unrealistic because in several appli-
cations in biology (morphogenesis) [1, 11, 34, 33], social sciences [9] or traffic
flow [14] this kind of situations (solutions with large queues) could activate
other processes which is the case, for example, of the biochemical processes
inside the cells whose activation depends on the time of exposure as well as
on the received concentration of morphogen, see [1]. Then, exploring or mod-
eling new nonlinear transport/diffusion phenomena is an interesting subject
not only from the viewpoint of applications but also from a mathematical
perspective.

Reaction–diffusion systems have also attracted the attention as prototype
models for pattern formation which is, in particular, connected with the study
of travelling waves, i.e. solutions of the type u(t, x) = u(x − σt) playing
an important role in concrete applications. The problem when considering
travelling waves for (1) is that the evolution of the support could have an
infinite speed of propagation, which would contradict the fact that the speed
should not exceed the propagation rate of the real transport process.
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Motivated by the above considerations the objective of this paper con-
sists in analyzing the existence of travelling waves for the one–dimensional,
nonlinear, flux limited reaction–diffusion equation

∂u

∂t
= ν∂x

 u∂xu√
|u|2 + ν2

c2
|∂xu|2

+ f(u), u(t = 0, x) = u0(x), (2)

where ν is the viscosity and c is a constant velocity related to the inner
properties of the particles. Why this election for the nonlinear diffusion term?
First of all, the solutions to this system have finite speed of propagation as
opposite to the linear heat equation, i.e. for an initial data with compact
support the velocity of growth of the support of the solution is bounded by
c (see [2]). Furthermore, this is an extension of the heat equation in the
following sense: rewrite the heat equation as

∂u

∂t
= ν

∂

∂x

[
u
∂

∂x
lnu

]
= ν

∂

∂x
[u v], (3)

where v is a microscopic velocity. In this form the heat equation can be seen
as a transport kinetic equation. The velocity v is determined by the entropy
of the system, S(u) = ulnu, and by the concentration u, via the following
formula

v =
∂

∂x

(
S(u)

u

)
. (4)

Note that S(u)
u

= lnu is known as the chemical potential. We propose to
modify the form of the flux in (3) by considering a new microscopic velocity
averaged with respect to the line element associated with the motion of the

particle, so that the new velocity is given by ∂
∂v

√
1 + |v|2 = v√

1+|v|2
with

v =
∂x(S(u)/u)√

1 + [∂x(S(u)/u)]2
, (5)

arriving at the flux limited equation (2). This implies that the chemical
potential is now finite, which is not the case for the linear heat equation.
Thus, the velocity for which the concentration or density u is transported
depends on the entropy of the system (determining the disorder) as well as
on its density under an appropriate measure. This is the situation in which
one can think in a traffic flow or in a biological context, for example.
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For the reaction term, we will consider one canonical model of Fisher
[19] or KPP [23] (for Kolmogorov, Petrovsky and Piskunov) type to analyze
travelling waves, called FKPP from now on. For the linear diffusion case,
the properties associated with this system are well understood in the ho-
mogeneous framework, see for example [7, 8, 19, 23]. The above equation
(2) with f = 0 is known as the relativistic heat equation and is one among
the various flux limited diffusion equations used in the theory of radiation
hydrodynamics [26].

The term f(u) is written as uK(u), where K is known in biology as the
growth rate of the population. The main hypotheses on the FKPP reaction
term K ∈ C1([0, 1]) are typically written as

(i) K(1) = 0 , (ii) K ′(s) < 0 , s ∈ (0, 1] . (6)

These hypotheses on K(u) have some consequences on f(u) such us f(0) =
f(1) = 0, f ′(1) < 0, f ′(0) > 0, f > 0 in (0, 1). Hypothesis (i) in (6) is a
normalization property of the carrying capacity and (ii) represents a satu-
ration of the media when the concentration is increasing. Typical examples
of such nonlinearities are K(s) = k(1 − s) or K(s) = k(1 − s2), where
k = K(0) = f ′(0) is a constant related to the growth rate of the (biological)
particles, usually called intrinsic growth rate. In [19, 23] it was proved that,
under the above assumptions, there is a threshold value σ∗ = 2

√
νk for the

speed σ associated with the linear diffusion system (1). Namely, no fronts
exist for σ < σ∗, and there is a unique front (up to space or time shifts) for
all σ ≥ σ∗.

The study of existence and uniqueness of solutions to the flux limited
reaction-diffusion equation (2) has been done in [2], see also the references
therein for a complete study of the “relativistic” heat equation. The natural
concept of solution for this problem implies the use of Kruzhkoz’s entropy
solutions. In fact, in [2] it is proved that for any initial datum 0 ≤ u0 ∈
L1(RN) ∩ L∞(RN), there exists a unique entropy solution u of (2) in the
N -dimensional case [0, T ) × RN , for every T > 0, such that u(t = 0) = u0.
In addition, solutions live in a subspace of Bounded Variation functions.
Moreover, if u(t), ū(t) are the entropy solutions corresponding to initial data
u0, ū0 ∈ (L∞(RN) ∩ L1(RN))+, respectively, then

‖u(t)− ū(t)‖L1(RN ) ≤ et‖f‖Lip‖u0 − ū0‖L1(RN ) , ∀t ≥ 0 ,

where ‖f‖Lip denotes the Lipschitz constant for f in [0, 1]. The the existence
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of entropy solutions to initial data only in in L∞ was extended in Proposition
3.14 of [2].

One of the most important differences between the linear (1) and the
nonlinear (2) diffusion models emerges, besides the existence theory reported
above, in the study of travelling waves. A travelling wave is a solution having
a constant profile which moves with constant speed, i.e. a solution of the
equation of the form u(t, x) = u(ξ) with ξ = x−σt for some constant σ. The
function u is usually called the wave profile and the constant σ is the wave
speed. Let us give a simple example that may illustrate the results obtained
in this paper for (2) by means of a simplified reaction-flux–limited-diffusion
equation,

∂tu = ∂x

(
u
∂xu

|∂xu|

)
+ u(1− u) , (7)

which allows us to compute explicit travelling waves. Given (7), the equation
satisfied by a decreasing wave front profile u(ξ) = u(x− σt) is

−σu̇ = −u̇+ u(1− u) .

Then, it can be easily proved the existence of a unique, global classical solu-
tion given by

uσ(ξ) =
1

e−
1

σ−1
ξ + 1

, ξ ∈ R ,

only if σ > 1 up to space or time shifts. Furthermore, the step function
u(ξ) = 1 if ξ < 0 and null otherwise, gives the travelling wave profile of
an entropy solution to (7) with σ = 1. Let us observe how regular and
discontinuous solutions coexist in this simplified model. To complete the
above results see [2].

As in the previous case, we find singular profiles for the travelling waves of
(2) which to a certain extent constitute the equivalent notion of shock waves
in hyperbolic models for traffic flow. On the other hand, there is a wide
variety and significant differences for the possible choices of the velocity σ
for the travelling wave solutions to the nonlinear reaction–diffusion equations
(2) with respect to those associated with (1).

In this paper, we look for a particular kind of travelling waves called
wave front, determined by a decreasing wave profile u ∈ (0, 1) such that
limξ→−∞ u(ξ) = 1, limξ→∞ u(ξ) = 0, verifying (2) in a sense specified later.
By the degenerate character of the flux limiter if u ≡ 0, we split the analysis
of the wave front in two steps. For the positive part u(ξ) > 0 ∀ξ ∈ (−∞, ξ0),
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we impose that u ∈ C2 solves the equation in a classical sense. Thus, if
ξ0 = ∞ we will have a classical solution verifying the equation everywhere
in the domain of definition. If ξ0 <∞, we will see that the null extension of
the positive part can be an entropy solution under certain conditions, these
solutions being discontinuous. The entropy criterium is necessary in this
problem since it selects travelling waves of discontinuous type.

Our main result is the following.

Theorem 1.1. In terms of a value σ∗ ≤ c, depending on ν, c, and k, there
exists a wave front which is

(i) a classical solution to (2), with wave speed σ > σ∗ or σ = σ∗ < c;

(ii) a discontinuous entropy solution to (2), with wave speed σ = σ∗ = c.

Remark 1. The existence of travelling wave solutions in the case σ < σ∗ is
an open problem. Also, the existence of other kind of travelling waves such
as those with pulses or soliton-type shape could be explored, see for example
[28] or [17] in another context.

In Section 2 we will analyze the necessary and sufficient condition for the
parameters ν, c, and k in order to determine σ∗. The analytical theory deal-
ing with the existence of a solution-set-structure follows from the associated
asymptotic initial value problem satisfied by the travelling wave profile. This
problem is framed in the analysis of a planar dynamical system where the
wave speed σ is a parameter.

Another fundamental property of equation (1) concerns the asymptotic
speed of spreading and was established in [8]: If u0 ≥ 0 is a continuous
function in RN with compact support and u0 6≡ 0, then the solution u(t, x)
with initial data u(t = 0, x) = u0(x) spreads out with speed σ∗ in all direc-
tions as t → +∞, i.e. max|x|≤σt|u(t, x) − 1| → 0 for each σ ∈ [0, σ∗), and
max|x|≥σtu(t, x) → 0 for each σ > σ∗. A similar result may fit our context
by the control of the bound of the entropy solution in the set {x > σ t} by
means of an exponential function with negative exponent (see Proposition
3.4 below).

The paper is organized as follows. In Section 2 we pose the asymptotic
initial value problem associated with travelling wave solutions and deal with
the existence and uniqueness of regular travelling waves. Finally, in Section
3 we analyze the singular wave profiles that can be identified as entropy
solutions.
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2 An equivalent problem for classical travel-

ling waves

As we mentioned before, the aim of this section is to analyze the classical
wave front solutions to (2).

2.1 Travelling wave equations

The existence of a regular travelling wave u(x−σt) of the equation (2) leads
to the problem of finding a solution of the following equation

ν

 uu′√
|u|2 + ν2

c2
|u′|2

′ + σu′ + f(u) = 0 , (8)

which is defined on (−∞, ξ0) and satisfies

lim
ξ→−∞

u(ξ) = 1 (9)

and
u′(ξ) < 0 for any ξ ∈ (−∞, ξ0) . (10)

The constant σ is a further unknown of the problem. Let us analyze this
asymptotic initial value problem where f(u) = uK(u) and K fulfills (6). The
following result contributes to deduce the asymptotic value of the derivative
of u.

Lemma 2.1. Let u : (−∞, ξ0) → (0, 1) be a solution of (8) that satisfies
(9)-(10). Then,

lim
ξ→−∞

u′(ξ) = 0 . (11)

Proof. Take ξn → −∞ with ξn < ξ0. For any fixed n ∈ N we use the mean
value theorem in the interval [ξn−1, ξn] to obtain the existence of a sequence
sn ∈ [ξn − 1, ξn] satisfying

u′(sn) = u(ξn)− u(ξn − 1)→ 0.
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Then, we integrate (8) over [sn, ξn] and analyze the terms of the following
equality

∫ ξn

sn
ν

 u(δ)u′(δ)√
|u(δ)|2 + ν2

c2
|u′(δ)|2

′ dδ +
∫ ξn

sn
σu′(δ)dδ +

∫ ξn

sn
f(u(δ))dδ = 0 .

The third term ∫ ξn

sn
f(u(δ))dδ → 0 ,

since the interval is bounded and the integrand converges uniformly to zero.
The second term, using Barrow’s rule, is

σ(u(ξn)− u(sn))

that tends to zero because of (9). The first term, again from Barrow’s rule,
takes the form

ν
u(ξn)u′(ξn)√

|u(ξn)|2 + ν2

c2
|u′(ξn)|2

− ν u(sn)u′(sn)√
|u(sn)|2 + ν2

c2
|u′(sn)|2

,

which tends to zero since u′(sn)→ 0 and

ν
u(ξn)u′(ξn)√

|u(ξn)|2 + ν2

c2
|u′(ξn)|2

→ 0.

Using (10) one gets

u(ξn)u′(ξn)√
|u(ξn)|2 + ν2

c2
|u′(ξn)|2

=
−1√

1
|u′(ξn)|2 + ν2

c2
1

|u(ξn)|2
,

therefore
1

|u′(ξn)|2
+
ν2

c2
1

|u(ξn)|2
→∞ .

As the second term tends to ν2

c2
, then 1

|u′(ξn)|2 →∞ and finally u′(ξn)→ 0. We

have then shown that for any ξn → −∞, u′(ξn)→ 0. This proves (11).

In a classical framework, looking for travelling wave solutions is equivalent
to finding heteroclinic trajectories of a planar system of ODE’s which arises
from transforming the original problem into travelling wave coordinates (see
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[19, 23, 31]). The same ideas in the search of travelling waves of (2) leads to a
system which is not uniquely derived from heteroclinic trajectories. Hence, a
more detailed analysis of the phase diagram for the planar system of ODE’s
is required. Define

r(ξ) = −ν
c

u′(ξ)√
|u(ξ)|2 + ν2

c2
|u′(ξ)|2

, (12)

where u is any positive solution of (8)–(9)–(10). Then (u, r) satisfies the first
order differential system

u′ = − c
ν

|u| r√
1− r2

,

r′ =
c

ν

r(r − σ
c
)√

1− r2
+

1

c
K(u) .


(13)

By using that u′ < 0, (12) yields r ∈ (0, 1). Also, Lemma 2.1 implies
limξ→−∞ r(ξ) = 0. As a consequence, the problem of finding a maximal
solution of (8)–(10) is equivalent to look for a solution (u, r) : (−∞, ξ0) →
(0, 1)2 of (13), maximal in (0, 1)2, that satisfies

lim
ξ→−∞

u(ξ) = 1, lim
ξ→−∞

r(ξ) = 0. (14)

We now analyze the equilibrium points of the system (13) which are (1, 0)
and (0, r∗), where r∗ ∈ (0, 1) is a possible root of

c

ν

r(r − σ
c
)√

1− r2
+

1

c
k = 0 , (15)

with k = K(0) = f ′(0). The existence of equilibrium points (u, r) = (0, r∗)
will determine the behavior of the solution to (13)-(14) and consequently of
the solution to (8)–(10). More precisely, we obtain the following result.

Proposition 2.1. There always exists a solution u of (8) that satisfies (9)
and (10). This solution is unique up to a time translation and verifies:

(i) If there exist no roots r∗ ∈ (0, 1) of (15), then the existence interval for
u can be extended to (−∞, ξ0), with ξ0 <∞, and

lim
ξ→ξ0

u(ξ) > 0, lim
ξ→ξ0

u′(ξ) = −∞. (16)
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(ii) If there exist roots of (15), then ξ0 =∞ and u satisfies

lim
ξ→∞

u(ξ) = 0 . (17)

As a consequence, this solution is maximal in R × (−1, 1) and is located in
(0, 1)2.

To prove Proposition 2.1 we will need two preliminary results describing
some properties of r and u.

Lemma 2.2. Let −∞ < ξ0 ≤ ∞ and (u, r) : (−∞, ξ0)→ (0, 1)2 be a solution
of (13) that satisfies (14). Then, r′(ξ) > 0. The same holds true for any
extension of (u, r). In particular, the maximal solution (uM , rM) associated
with (u, r) remains in (0, 1)2 and verifies r′M(ξ) > 0.

We will give the proof of this result at the end of this Section by analyzing
in detail the zeros of r′ in (13) and describing the phase diagram associated
with (13)-(14).

The following result deals with the strict positivity of u.

Lemma 2.3. Let (u, r) : (ξ1, ξ0)→ (0, 1)2 be a solution of (13), where −∞ ≤
ξ1 < ξ0 ≤ ∞ are such that

lim
ξ→ξ0

r(ξ) = 1 , r′(ξ) > 0 .

Then
lim
ξ→ξ0

u(ξ) > 0 .

Proof. Denote (ū, r̄) this particular solution. A contradiction argument al-
lows to define ũ(r) := ū(r̄−1(r)) in an interval (1− ε, 1) that satisfies

z′ =
−zr

r(r − σ
c
) + ν

c2
K(ũ(r))

√
1− r2

, z(1) = 0 .

If σ
c
6= 1, this equation is locally Lischitsz-continuous in z and the point (1, 0)

is regular. Then, by using the uniqueness of the initial value problem z must
vanish identically, which is a contradiction. If σ

c
= 1, then the differential

equation is singular. However, ũ is a solution of the differential equation

z′ = −z h(r)√
1− r
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With
h(r) =

r

−r
√

1− r + ν
c2
K(ũ(r))

√
1 + r

.

The term h(r)√
1−r is singular but improperly integrable and the associated dif-

ferential equation has uniqueness again by arguing via the separated variables
theory.

We are now in a position to prove Proposition 2.1.

2.2 Proof of Proposition 2.1

A local analysis of (13) gives the following Jacobian matrix in (u, r)

J [u, r] =


− c
ν

r√
1− r2

− c
ν

u

(1− r2)3/2

K ′(u)

c
− c
ν

σ
c
− 2r + r3

(1− r2)3/2

 .

Clearly,

J [1, 0] =


0 − c

ν

K ′(1)

c
−σ
ν


has two eigenvalues λ− < 0 < λ+ (because K ′(1) < 0) which are given

by λ± = − σ
2ν
±
√(

σ
2ν

)2
− K′(1)

ν
. The local unstable manifold theorem (see

[20, 22]) guarantees the existence of a curve with initial condition γ for which
the corresponding solution satisfies (14). As the slope of the eigenvector
corresponding to λ+ is negative (see Remark 2 for an explicit calculus of the
eigenvector) only one branch of γ−{(1, 0)} is locally contained in (0, 1)2. Let
us take γ maximal in (0, 1)2. Then, there exist solutions of (13) satisfying
(14). Uniqueness up to a time translation comes up from the local uniqueness
of the branch γ. Now, Lemmata 2.2 and 2.3 can be applied.

From the fact that u′ has opposite sign to r we can deduce that u satisfies
(9) and (10). According to the existence of roots of equation (15) we will
prove the statements, (1) or (2), of Proposition 2.1. Let us choose (u, r) :
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(−∞, ξ0)→ (0, 1)2 to be a particular solution of (13) satisfying (14). Then,
Lemma 2.2 implies that the following limit exists

lim
ξ→ξ0

r(ξ) = rL .

Let us prove that rL is a lower bound for any possible root r∗ of (15), i.e.
rL ≤ r∗. In fact, if r(ξ̄) = r∗ for ξ̄ ∈ (−∞, ξ0), then (6) leads to

r′(ξ̄) =
c

ν

r(ξ̄)(r(ξ̄)− σ
c
)√

1− r2(ξ̄)
+

1

c
K(u(ξ̄)) <

c

ν

r(ξ̄)(r(ξ̄)− σ
c
)√

1− r2(ξ̄)
+

1

c
k = 0 ,

which contradicts Lemma 2.2. We focus now on the case in which there
exists r∗ a root of (15). Assume u < 1 and r(ξ) < r∗ for any ξ ∈ (−∞, ξ̄).
Thus, 0 < r(ξ) < rL < 1 and the pair (u(ξ), r(ξ)) lives in a compact set for
ξ near ξ0, away from r = 0, r = 1, and maximal also in R× (−1, 1). Global
continuation theorems imply ξ0 =∞.

To prove (17) we observe that

lim
ξ→∞

u′(ξ)

u(ξ)
= − c

ν
lim
ξ→∞

r(ξ)√
1− (r(ξ))2

= − c
ν

rL√
1− r2

L

< 0 . (18)

Hence, we can use a Gronwall-type estimate in an interval (ξ∗,+∞) with ξ∗

large enough so that u′(ξ) ≤ −αu(ξ) holds, where α is a positive constant
and ξ > ξ∗.

In the case that (15) has no roots, let us first prove that rL = 1. Arguing
by contradiction (by assuming rL < 1), we can use a similar argument as in
the previous case by using rL instead of r∗. In this way, we will obtain that
ξ0 = +∞, and also (17). On the other hand, since r has a limit as ξ goes
to +∞, then r′(ξn) → 0 up to a subsequence. Using this fact in the second
equation of (13) we obtain that rL is a root of (15), which contradicts our
assumption. Hence, rL = 1 holds and the first equation of (13) leads to

lim
ξ→ξ0

u′(ξ)

u(ξ)
= −∞ . (19)

Now, we use Lemma 2.3 to show the first part of (16). There only remains
to prove that ξ0 < ∞. This statement can be achieved by a contradiction
argument again. Actually, if ξ0 = +∞ we get a sequence ξn for which
u′(ξn)→ 0, which contradicts (19). �
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Remark 2. It is possible to follow very precisely the track of the solution of
(13) starting from the point (u, r) = (0, 1). Denote r = r̃(u) the smallest root
of

1

K(u)

c2

ν

(
σ

c
− r̃(u)

)
=

√
1− (r̃(u))2

r̃(u)
, u ∈ (0, 1) .

The eigenfunction associated with the eigenvalue λ+ = − σ
2ν

+

√(
σ
2ν

)2
− K′(1)

ν
,

defined at the beginning of the proof of Proposition 2.1, determines the lo-

cal unstable manifold and is defined by
(
c
σ+
√
−4K′(1)ν+σ2

2K′(1)ν
, 1
)

. On the other

hand, it is easy to check that the following identity

lim
u→1

r̃(u) =
ν

c σ
K ′(1)

holds. Then,
(
1, ν

c σ
K ′(1)

)
is the tangent vector to the solution curve r =

r̃(u). Comparing the slopes of the above vectors leads to the following unre-
stricted inequality

2K ′(1)ν

c(σ +
√
−4K ′(1)ν + σ2)

>
ν

c σ
K ′(1) .

Therefore, the curve r = r̃(u) starting at u = 1 verifies that r′|u=1 < 0.

2.3 Existence of roots for (15)

To conclude the section we describe the existence of roots in (15) depending
on σ, c, ν and k = K(0). This problem is equivalent to find zeros of the
equation

c2

νk

(
σ

c
− r

)
= g(r) , r ∈ (0, 1) , (20)

where g is defined as

g(r) =

√
1− r2

r
,

which is a decreasing function with a pole at r = 0. The left–hand side is a
decreasing linear function that touches the r–axis at σ

c
with slope − 1

k
c2

ν
. So,

when
σ

c
> 1 (21)

14



there exists at least one root of (20), see Figure 1 (first two cases). Define r̃
as the smallest root of (20) in (0, 1).

Let us now focus our attention on the case
σ

c
≤ 1. (22)

Now, the existence of roots of (20) depends on σ
c

as well as on the slope

− c2

ν
1
k

of the straight line in the left–hand side of (20). Let us prove that

for a range of values m = c2

ν
1
k
, there exists σ∗ = σ∗(m) such that for every

σ
c
∈ (σ

∗

c
, 1) there exists a root of (20). Note that g′(r) has a unique maximum

in (0, 1), around it the function is inceasing and then decreasing, verifying

g′(r) ≤ −3
√

3
2

= g′(
√

2/3) and limr→0 g
′(r) = limr→1 g

′(r) = −∞. Then, if

−m ≤ −3
√

3
2

, we can claim that there exist roots in (0, 1) of the equation

g′(r) = −m. (23)

In fact, when the inequality is strict, i.e. −m < −3
√

3
2

, there are two roots
in (0, 1) while there is only one if the equality is fulfilled, see Figure 1. Let

us denote r̃ the smallest real root of (20), r̃ ∈ (0,
√

2/3). Consider the

intersection δ̃ of the tangent to g at r̃ with the abscissa, which has the
expression

δ̃ = δ̃ (m) = r̃ − g(r̃)

g′(r̃)
= 2r̃ − r̃3. (24)

Clearly, we have that for any σ
c
≥ δ̃ (m) the equation (20), with m = c2

ν
1
k
, has

at least one root in (0, 1). To analyze the case σ
c
< 1 we will check the range

of values m for which δ̃ (m) ≤ 1. By using (24) we deduce that δ̃ (m) ≤ 1 if

and only if r̃ ≤
√

5−1
2

or, according to (23),

m ≥
(

1 +
√

5

2

) 5
2

. (25)

In conclusion, under condition (25) there exists a root of (20) in (0, 1), for
every σ

c
≥ δ̃ (m).

Define σ∗(m) as follows

σ∗(m)

c
=

 δ̃(m), when m ≥
(

1+
√

5
2

) 5
2 ,

1, otherwise.
(26)

Then, we have proved the following result
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Proposition 2.2. There exists a solution of (15) in r ∈ (0, 1) if and only if
σ > σ∗ or σ = σ∗ < c, where σ∗ is defined by (26).

As a consequence, combining Propositions 2.2 and 2.1 allows to deduce
the existence of a classical solution in Theorem 1.1.

2.4 Proof of Lemma 2.2

In order to prove Lemma 2.2, let us provide a description of the positive
invariant set associated with the flux defined by the planar system (13). The
values (u, r) for which r′ = 0 are defined by the equation

K(u) = −c
2

ν

r(r − σ
c
)√

1− r2
. (27)

The roots of this equation can be equivalently obtained as the intersections

between g(r) =
√

1−r2
r

and the straight line − c2

K(u)ν

(
r − σ

c

)
. The straight line

is determined by the point
(
σ
c
, 0
)

and the slope − c2

K(u)ν
, where only the last

one depends on u. Using (6), we have that the slope is a decreasing function
of u verifying

−∞ < − c2

K(u)ν
≤ − c2

K(0)ν
= − c

2

kν
, u ∈ [0, 1).

Our purpose now is to describe the function r̃(u), which is defined by the
smallest root of (27) for σ, c and ν fixed. We will prove that he number of
these roots as well as their existence depend on the value σ

c
. Simple calculus

gives that the tangent to g passing by (σ
c
, 0) satisfies

r
(
2− r2

)
= − g(r)

g′(r)
+ r =

σ

c
.

The maximum value of the function r (2− r2), reached at
√

2/3, is 8/(3
√

6).

The value of σ
c

in relation to 1 and 8/(3
√

6) will determine the different cases.
In Figure 1 the curved lines describe the function g(r) while the straight lines

represent the function 1
K(u)

c2

ν

(
σ
c
− r

)
.

In the first case (left–hand side in Figure 1), σ
c
≥ 8/(3

√
6), the straight

lines have an unique intersection with the curve g(r) and consequently r̃(u) is

16



σ/c1 8/(3√6) σ/c1 8/(3√6)r*+r*- σ/c 1 8/(3√6)r*

r δ~ ~

Figure 1: The curved lines represent the function g(r) and the straight lines

the functions c2

νK(u)

(
σ
c
− r

)
for different values u.

uniquely determined and is a decreasing function. The second case (central
picture in Figure 1) corresponds to 1 < σ

c
< 8/(3

√
6). It is easy to check

that again r̃(u) is uniquely determined and is a decreasing function which
has the shape given in Figure 2 in terms of the two critical values r∗+ and
r∗−. Finally, the third case 0 ≤ σ

c
≤ 1 is represented by the picture in the

right–hand side of Figure 1. The function r̃(u) has the same monotonicity
and well–definition properties that in the previous cases, but now the critical
value r∗ determines the range of definition. The analysis represented in
Figure 1 leads to the complete definition of r̃(u).

Let us now prove that the region

S =

(
(u, r) ∈ (0, 1)2,

{
0 < r < r̃(u), if r̃(u) is defined,
0 < r < 1, otherwise

)
(28)

is positively invariant. In order to prove the positive invariance of S we
will describe the flux at the boundary. First, we observe that the segment
{(u, r), 0 ≤ r < 1, u = 0} at the left–hand side of the square (0, 1)2 is
invariant, which prevents the solutions to escape through it. Every point of
the segment {(u, r), 0 < u < 1, r = 0} at the bottom of the square (0, 1)2

has an strict incoming flux because the vector field is vertical through this
segment. The arrow coming from the corner (u, r) = (1, 0) corresponds to
the discussion about the eigenvector for the local unstable manifold theorem
in Remark 2. The solid lines in Figure 2 correspond to the curves r̃(u) and
satisfy that the vertical components of the flux are zero because r′ = 0 while
u′ < 0. The dashed lines corresponding to the slopes in the curves r̃(u) are
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σ/c ≥ 8/(3√6) 1 < σ/c  < 8/(3√6)

r*+

r*-

1≥ σ/c ≥ 0

1

r*

1

r(u)~

1 1 1

r(u) r(u)~ ~

r*

1

Figure 2: Description of the positive invariant regions S in terms of the
curves r̃(u).

also incoming points since u′ < 0 there. Then, in Figure 2 we have plotted
the phase diagram (slope field) of the planar system (13), (u, r) : (−∞, ξ0)→
(0, 1)2 with boundary conditions (14) and (17). Therefore, we have proved
that if there exists ξ̄ such that (u(ξ̄), r(ξ̄)) ∈ S, then (u(ξ), r(ξ)) ∈ S, for any
ξ ≥ ξ̄.

We shall be done with the proof once we prove the existence of a sequence
of values ξ̄n such that ξ̄n → −∞ and (u(ξ̄n), r(ξ̄n)) ∈ S. Using (14), we can
deduce the existence of a sequence ξ̄n → −∞ for which r′(ξ̄n) > 0. Now,
we observe that the graphic of r̃(u) splits (0, 1) × (0, r∗) into two compo-
nents characterized by r′ > 0 or r′ < 0. Since (u(ξ̄n), r(ξ̄n)) → (1, 0), then
(u(ξ̄n), r(ξ̄n)) ∈ S ∩ (0, 1)× (0, r∗) for n large enough. �

3 Entropy solutions and consequences

In this section we deal with the study of discontinuous traveling waves. So
far ad authors know, there is no previous literature reporting on the existence
of singular traveling waves. In this case it is necessary to use the notion of
entropy solution for this equation, which has been introduced in [2].

The main result of this section is the following Theorem about existence
of singular travelling wave solutions.

Theorem 3.2. Assume σ = σ∗ = c. Then, there exists a discontinuous
entropy travelling wave solution of (2).

The existence of entropy, travelling wave solutions if σ < σ∗ is an open
problem.
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Define

v(t, x) =

{
u(x− σt), x− σt < ξ0,
0, otherwise,

(29)

where σ ≤ σ∗ and u : (−∞, ξ0) → (0, 1), ξ0 < ∞, is a solution of (8) given
by Proposition 2.1. (16) implies that v is discontinuous.

It is not trivial to prove that some of these functions v are entropy solu-
tions. This follows from the next two results.

Lemma 3.4. Any solution of (8) satisfying (9)–(10) is log-concave in (−∞, ξ0).

Proof. To see that log(v(ξ)) is concave, it is enough to prove that v′(ξ)
v(ξ)

is

decreasing. Using the system (13) we have

v′(ξ)

v(ξ)
= − c

ν

r(ξ)√
1− r(ξ)2

.

The result follows from Lemma 2.2, since the function r → r√
1−r2 , r ∈ (0, 1),

is strictly increasing.

The following Proposition characterizes the entropy solutions. The proof
follows the same lines of Proposition 6.6 in [3], where a similar result was
obtained in the case of compact support solutions for the equation without
the reaction FKPP term. Thus, combining Theorem 3.4 and Proposition
6.6 in [3] together with the null flux at infinity for non–compact support
solutions and Proposition 3.15 in [2] we have

Proposition 3.3. Let v : [0, T ) × R → [0, 1) and Ω = supp(v(0, ·)) be such
that for any t ∈ [0, T ):

(i) supp(v(t, ·)) = Ωt, where Ωt = Ω +B(0, c t).

(ii) v ∈ C2(Ωt) and satisfies the differential equation (2).

(iii) v(t, x) has a vertical contact angle at the boundary of Ωt, for any t ∈
(0, T ).

(iv) v(t, x) is log-concave in Ωt.

Then, v is an entropy solution.
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This result allows to select an entropy solution v from those defined by
(29). Properties (ii) and (iv) of Proposition 3.3 are satisfied by any v, but
only when σ = σ∗ = c the statement (i) holds, i.e. supp(v) = Ω(t). Moreover,
we conclude the proof of Theorem 3.2 by proving that, in this case, v has
a vertical contact angle at the boundary of Ω(t), and therefore (iii) is also
satisfied.

The following result can be deduced directly from Proposition 2.1. We
give here a more explicit behavior of the vertical angle near ξ0.

Lemma 3.5. Let u be a discontinuous travelling wave for σ = σ∗ = c. Then,
the vertical angle near ξ0 is of order (ξ0 − ξ)−

1
2 .

Proof. Our starting point is system (13). By using Lemma 2.3 we can assure,
when σ ≤ σ∗, that there exists a constant ασ > 0 and ξ0 such that u(ξ0) = ασ
and r(ξ0) = 1 . In the case σ = σ∗ = c, (13) leads to

r′ =
1

c
K(u)− c

ν
r

√
1− r√
1 + r

.

Clearly r′(ξ0) = 1
c
K(ασ) <∞. An expansion of r(ξ) in Taylor series around

ξ0 allows to find r(ξ) = 1 + 1
c
K(ασ)(ξ − ξ0) +O((ξ − ξ0)2). Now, combining

this expression with the equation for u and integrating between ξ0 y ξ, 0 <
ξ0 − ξ � 1, we obtain

−log(u(ξ0)) + log(u(ξ)) =
c

ν

2(
21
c
K(ασ)

) 1
2

(ξ0 − ξ)
1
2 − c

ν

(
K(ασ)

2c

)
(ξ0 − ξ)

3
2 .

Neglecting higher–order terms we find u(ξ) = ασe

2

(2 1
cK(ασ))

1
2

(ξ0−ξ)
1
2

or

u(ξ) = ασ + ασ
2(

21
c
K(ασ)

) 1
2

(ξ0 − ξ)
1
2 , for 0 < ξ0 − ξ � 1 ,

after Taylor expansion.

Remark 3. Since classical solutions are in particular entropy solutions, the
existence of travelling waves for σ ≥ σ∗ is completed. The existence of an
entropy solution for σ < σ∗ is an open question, we can only assure that the
corresponding function v, defined by (29), is not an entropy solution. This
follows from the fact established in Theorem 3.9 of [2], that the support of
any log-concave solution moves with speed c while the support of v(t, ·) moves
with σ < c.
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Remark 4. The existence of travelling waves having different profiles from
wave fronts is also an open question. It can be proved that no more clas-
sical (C2) wave fronts exist. The authors conjecture that no more entropy
travelling wave solution will exist, but it is likely to be a much harder problem.

To conclude this section we propose an application of the travelling wave
solutions with σ∗ < c that allows to bound entropy solutions.

Proposition 3.4. Let u0 : R→ [0, 1) be a measurable function with compact
support and ess sup(u0) < 1. Let u(t, x) be an entropy solution of (2) with
initial data u0. Then,

ess supx∈R(u(t, x)) < 1

and for any c > σ > σ∗ there exist positive constants α and β not depending
on σ such that

ess sup|x|>σtu(t, x) ≤ αe−β(σ−σ∗)t.

In addition, if σ > c we have

ess sup|x|>σtu(t, x) = 0

for large t.

Proof. Let v∗(t, x) = u∗(x − σ∗t) be a C2 travelling wave solution of (2)
defined by Theorem 1.1. Then, we can take a translation of u∗, still denoted
u∗ for simplicity, such that u∗(ξ) ≥ u0(ξ). A comparison principle for entropy
solutions, see Theorem 3.8 in [2], leads to

u(t, x) ≤ u∗(x− σ∗t), a.e. (t, x) ∈ R2.

On the other hand, for a classical travelling wave there exist positive con-
stants α and β such that

u(ξ) ≤ αe−βξ , ξ ∈ R .

This upper estimate is a consequence of the fact that u∗ is uniformly bounded
and limξ→∞

(u∗(ξ))′

u(ξ)
is strictly negative as pointed out in (18). Hence, we find

u(t, x) ≤ u∗(x− σ∗t) ≤ αe−β(x−σ∗t), a.e. (t, x) ∈ R2. (30)

Assuming now that x > σ t, we deduce from (30) the inequality

u(t, x) ≤ αe−β(σ−σ∗)t, a.e. (t, x) ∈ R2, x > σ t. (31)
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In the case x < −σ t we can argue in a similar way by using a classical
travelling wave ũ∗(σ∗t− x) such that u0(ξ) < ũ∗(−ξ).

The second assertion follows by a comparison argument with the singular
travelling wave defined by (29).
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