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1. Introduction31

This paper studies the following quasilinear elliptic equation32

div

(
∇u

f(u)
√
f(u)2 − |∇u|2

)
+

f ′(u)√
f(u)2 − |∇u|2

(
n+

|∇u|2
f(u)2

)
= nH(u, x), (E1)

|∇u| < f(u), (E2)

where f ∈ C∞(I) is a positive function, I is an open interval in R with 0 ∈ I,33

H : I × R
n → R is a given smooth radially symmetric function and u satis-34

fies u(Rn) ⊂ I. This PDE has a clear geometric interpretation which lies in the35
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realm of Lorentzian Geometry. Namely, each solution of (E) defines, in a natural1

way, a spacelike graph of the fiber on the Friedmann–Lemâıtre–Robertson–Walker2

(FLRW) spacetime M = I ×f R
n (see next section for details) where the function3

H prescribes the mean curvature of the spacelike graph.4

A spacelike hypersurface in a spacetime is a hypersurface which inherits a Rie-5

mannian metric from the ambient Lorentzian one. Intuitively, a spacelike hypersur-6

face is the spatial universe at one instant of proper time of a family of observers. In7

fact, a spacelike hypersurface defines the family of normal observers: each geodesic8

in the ambient spacetime determined by a point of the spacelike hypersurface and9

the future pointing unit normal vector at this point. The corresponding mean cur-10

vature function measures how these observers get away or coming together with11

respect to a given one. Indeed, these observers can be locally collected as the inte-12

gral curves of a reference frame in spacetime and the sign of its divergence (i.e. the13

measure of expansion/contraction for the observers in the reference frame, [26,29])14

is the same of the sign of the mean curvature function. Precisely, we are interested15

here in prescribing the mean curvature function for the case these observers get16

away in an FLRW cosmological model.17

On the other hand, a spacelike hypersurface is a suitable subset in spacetime18

where the initial value problem for each of the classical equations in General Rela-19

tivity (matter equations, Maxwell equations and Einstein equations) is well posed.20

In particular, spacelike hypersurfaces with constant mean curvature have shown21

to be an interesting tool in the study of Einstein equations. Concretely, they have22

been used to state and solve the constraint equations (see, for instance, [2, 16]).23

Geometrically, spacelike hypersurfaces with constant mean curvature in a (gen-24

eral) Lorentzian manifold appear as the critical points of the “area” functional25

under certain “volume constraints” [10, 13, 14]. The existence results for spacelike26

hypersurfaces with constant mean curvature is a classical and important problem27

(see [11] and references therein). Consequently, it has been useful to prove satis-28

factory uniqueness results. Among the uniqueness results, the seminal paper by29

Cheng and Yau [14] where the proof of the Calabi–Bernstein conjecture for any30

n-dimensional Lorentz–Minkowski spacetime was given, also introduced a new type31

of elliptic problems which have been developed in several different spacetimes, see32

for instance [10, 14, 28].33

In the latter years, many researchers have worked on the prescribed mean curva-34

ture problem on spacelike hypersurfaces in Lorentzian manifolds. Mainly, the efforts35

have focused for the case of the Lorentz–Minkowski spacetime L
n+1. In this context,36

we mention the paper of Bartnik and Simon [4], where a kind of “universal exis-37

tence result” is proved for the Dirichlet problem. More recently, many authors paid38

attention to the existence of positive solutions by using a combination of variational39

techniques, critical point theory, sub-supersolutions and topological degree (see for40

instance [5–7, 17–19] and the references therein). The Dirichlet problem in a more41

general spacetime was considered by Gerhardt [22].42
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In comparison with the Dirichlet problem, the number of references devoted1

to the study of entire spacelike graphs in the Lorentz–Minkowski spacetime with2

constant or prescribed mean curvature is appreciably lower. In this setting, the3

study of entire constant mean curvature spacelike graphs developed in [31] is moti-4

vated by the remarkable Calabi–Bernstein property in the maximal case, i.e. when5

mean curvature identically vanishes. Namely, Calabi [12] showed for n ≤ 4, and6

latter Cheng and Yau [14] for all n, that an entire maximal graph in L
n+1 must7

be a spacelike hyperplane. Treibergs proved L
n+1 the existence of entire graphs of8

constant mean curvature with certain asymptotic conditions. Later, Bartnik and9

Simon [4, Theorem 4.4] extended this result to a more general mean curvature func-10

tion, but related references concerning the prescribed curvature problem for entire11

graphs are rare. Up to our knowledge, in the latter years only [3,9] treat this prob-12

lem by using a variational approach for very concrete prescribed mean curvature.13

On the other hand, it is natural to wonder for the existence problem of prescribed14

mean curvature entire spacelike graphs with radial symmetry in spacetimes where15

they are expected, like in FLRW spacetimes. This is the main aim of this paper,16

whose main goals are the two following results.17

Theorem 1.1. Let I ×f R
n be an FLRW spacetime, and let R > 0 be such that18

If (R) ⊂ I, ϕ−1(R−) ⊂ I,

where19

If (R) :=

[
−
∫ 0

−R

f(ϕ−1(s))ds,
∫ R

0

f(ϕ−1(s))ds

]
and ϕ(t) =

∫ t

0

dt

f(t)
.

Then, for each radially symmetric smooth function H : I × R
n → R such that20

H(t, r) ≤ f ′

f
(t) and f ′(t) ≥ 0, for any r ∈ ]0, R[, t ∈ If (R),

there exists an entire radially symmetric spacelike graph with mean curvature func-21

tion H. In addition, the spacelike slice t = 0 intersects the graph in a ball with22

radius R. In the particular case that inf I is finite, the entire graph approaches to23

an hyperplane.24

Note that this result specializes to the particular but important case H = 0,25

providing entire maximal graphs in the FLRW spacetime I ×f R
n.26

In order to prove Theorem 1.1, the key point is an existence result for the27

associated Dirichlet problem in a ball that has its own interest.28

Theorem 1.2. Let I ×f R
n be an FLRW spacetime, and let B be the Euclidean29

ball in R
n with radius R centered at zero. Assume that If (R) ⊂ I. Then, for each30

radially symmetric smooth function H : I ×B → R such that31

H(t, r) ≤ f ′

f
(t) and f ′(t) ≥ 0, for any r ∈ ]0, R[, t ∈ If (R),

there exists a radially symmetric spacelike graph with mean curvature function H32

defined on B, supported on the spacelike slice t = 0 and only touching it on the33
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boundary {0} × ∂B and defining a non-zero hyperbolic angle with ∂t. Moreover, if1

the function H is increasing in the second variable, every spacelike graph satisfying2

the previous assumptions must be radially symmetric.3

This result extends the main theorem of [20], where a suitable bound for the4

radius R is required. To remove such assumption, we have to use a different method5

to achieve the proof. While [20] relies on a basic application of Schauder’s fixed point6

theorem, here we will need a more sophisticated approach. When passing to polar7

coordinates, we obtain a problem with a double singularity: the first singularity8

is on the independent variable at the value r = 0 and it is the usual singularity9

that appears at the origin in any radially symmetric problem defined on a ball; the10

second singularity is not standard on the related literature since it is a singularity11

on the dependent variable (see the second term of the left-hand side of Eq. (5)).12

To handle the first singularity, we use an approximation method through family13

of truncated problems, which is a classical approach for radial problems defined14

on a ball (see for example [27, Chap. 9] and the references therein), although in15

this context it is essentially new. On this sequence of approximated problems, the16

second singularity is handled by an adequate manipulation of the equation (see the17

first step of the proof of Theorem 4.1) that leads to a sequence of approximated18

solutions. To prove the convergence of this sequence, the key point is a delicate19

estimate of an a priori bound for the derivative of the solutions on the boundary20

(see Proposition 3.5). Once the Dirichlet problem is solved, the existence of an21

entire solution is obtained by extension of the solution of the Dirichlet problem. In22

performing this program, the paper advances on the application of techniques of23

Nonlinear Analysis to the problem of prescribed curvature in relativistic spacetimes24

under a new perspective.25

The structure of the paper is detailed in the following. In Sec. 2 we expose the26

necessary preliminaries. Sections 3 and 4 are devoted to study the Dirichlet problem27

and to prepare the proof of Theorem 1.1, which is briefly shown in Sec. 5. We finish28

in Sec. 6 with some conclusions and several explicit examples of special interest29

from the physical point of view.30

2. Preliminaries31

First of all, we are going to introduce the ambient spacetimes where our spacelike32

graphs are embedded. We consider the Euclidean space (Rn, 〈 , 〉), and let I be33

an open interval in the real line R endowed with the metric −dt2. Throughout34

this paper we will denote by M the (n+ 1)-dimensional product manifold I × R
n35

endowed with the Lorentzian metric36

g := π∗
I (−dt2) + f2(πI)π∗

F (〈 , 〉) ≡ −dt2 + f2(t)〈 , 〉, (1)

where f > 0 is a smooth function on I, and πI and πF denote the projections onto37

I and R
n respectively. Thus, M is a Lorentzian warped product with base I, fiber38

1650006-4



Page Proof

January 7, 2016 13:15 WSPC/S0219-1997 152-CCM 1650006
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R
n and warping function f . We will denote M by I×f M and refer it as an FLRW1

(RW) spacetime.2

Given an n-dimensional (connected) manifold S, an immersion φ : S → M is3

said to be spacelike if the Lorentzian metric (1) induces, via φ, a Riemannian metric4

g
S

on S. In this case, S is called a spacelike hypersurface. Observe that ∂t := ∂/∂t ∈5

X(M) is a unit timelike vector field which determines a time orientation on M.6

Thus, if φ : S → M is a spacelike hypersurface in M, we may define N ∈ X⊥(S)7

as the only globally defined, unit timelike vector field normal to S in the time8

orientation of ∂t.9

Among all the spacelike hypersurfaces in the FLRW spacetime M, there is a10

remarkable family. Namely, the so-called spacelike slices. In the terminology of [1], a11

spacelike hypersurface in M is called a spacelike slice if the function πI ◦φ : S → I is12

constant. The mean curvature of the spacelike slice t = t0 , with respect to the chosen13

normal vector field, is f ′(t0)/f(t0). The embedded spacelike slice t = t0 is clearly14

a graph on the whole fiber. More generally, given u ∈ C∞(U), U a domain in R
n,15

such that u(U) ⊆ I, the graph of u is defined as follows, Σu = {(u(x), x) : x ∈ U}.16

The graph is spacelike whenever17

|∇u| < f(u) on U. (2)

For a spacelike graph Σu, the unit timelike normal vector field in the same time18

orientation of ∂t is given by19

N =
f(u)√

f(u) − |∇u|2
(

1
f2(u)

∇u+ ∂t

)
,

and the corresponding mean curvature associated to N , is20

1
n

{
div

(
∇u

f(u)
√
f(u)2 − |∇u|2

)
+

f ′(u)√
f(u)2 − |∇u|2

(
n+

|∇u|2
f(u)2

)}
,

which may be seen as a quasilinear elliptic operator, because of (2).21

In order to state our problem, the first step is to perform a suitable variable22

change in (E) to make it easier. Indeed, consider23

v = ϕ(u), where ϕ(t) =
∫ t

0

ds

f(s)
.

Clearly, ϕ is a diffeomorphism from I to another open interval J in R. Consequently,24

it follows that ∇v = 1
f(u) ∇u. Therefore, |∇u| < f(u) holds if and only if |∇v| < 1.25

It is clear that u is radially symmetric if and only if v is also radially symmetric.26

After routine computations, our equation is transformed into27

div

(
∇v√

1 − |∇v|2

)
+
nf ′(ϕ−1(v))√

1 − |∇v|2 = nf(ϕ−1(v))H(ϕ−1(v), x). (3)
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Actually, the previous variable change is equivalent to consider the following con-1

formal map2

ϕ× Id : I ×f R
n → (J × R

n,−ds2 + g)

(t, p) �→ (ϕ(t), p),

which has conformal factor 1
f(t) . The Lorentzian product spacetime in the codomain3

of previous map is in fact an open subset of Lorentz–Minkowski spacetime L
n+1.4

Note that the mean curvature function of the spacelike graph of v in L
n+1 is5

1
n

div

(
∇v√

1 − |∇v|2

)
.

We will deal next with Eq. (3), under the conditions |∇v| < 1 on a ball B,6

centered in 0 of radius R, and v = 0 on ∂B. From the boundedness of the length of7

the gradient of v (the spacelike condition) it follows that |v| < R on B, i.e. the image8

of v lies in the interval [−R,R] or, equivalently, the image of the original function9

u = ϕ−1(v) is contained in ϕ−1([−R,R]). Hence, we have an a priori upper bound10

of the spacelike graph. Thus, the first assumption on the interval I in our FLRW11

spacetime is12

(A) [−R,R] ⊂ ϕ(I), i.e13

If (R) :=

[
−

∫ 0

−R

f(ϕ−1(s))ds,
∫ R

0

f(ϕ−1(s))ds

]
⊂ I.

Basically, (A) means that the interval I must be big enough to contain the highest14

or lowest possible spacelike graph.15

Summarizing, in the following sections we will take care of the problem16

div

(
∇v√

1 − |∇v|2

)
+
nf ′(ϕ−1(v))√

1 − |∇v|2 =nf(ϕ−1(v))H(ϕ−1(v), x) in B,

v =0 in ∂B.

(4)

We may observe that the last term in the left-hand side goes to infinity when |∇v|17

approaches to 1. The main difficulty of the problem comes from this singularity18

of the gradient. For nonlinearities not depending on the gradient, we mentioned19

in Sec. 1 that Bartnik and Simon proved a kind of general existence result, later20

generalized to continuous nonlinearities with possible dependence on the gradient21

in [5, Theorem 2.1]. The presence of the singular term prevents from a direct appli-22

cation of such results.23

3. The Associated Dirichlet Problem: A Priori Results24

The aim of this section is to show several a priori properties of the solutions of25

the associate Dirichlet problem, i.e. we pretend to find out certain results about26

1650006-6
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solutions of our prescription problem, supposing that they exist. These properties1

are related with the radial symmetry, and the strictly spacelike character of the2

graphs.3

3.1. Radial symmetry of positive solutions4

It is possible to state conditions on the prescription function to ensure that any5

eventual positive solution of (4) must be radially symmetric. In [20] it is exposed6

the following theorem, whose proof is based in the Alexandroff ’s Reflection Principle7

(see [23] for more details).8

Theorem 3.1. Let I ×f R
n be an FLRW spacetime, and let B a ball of R

n.9

For each smooth radially symmetric function H : I × B → R, H = H(t, r),10

radially increasing in the second variable and which satisfies H(0, r) ≤ f ′(0)
f(0) on11

∂B, any positive solution v of Eq. (4) is radially symmetric. Moreover, ∂v
∂r < 012

holds on ∂B.13

Remark 3.2. Geometrically, the last assertion means that the hyperbolic angle14

between the unit normal vector field N and ∂t is nowhere zero at the points of the15

graph corresponding to {0} × ∂B.16

Theorem 3.1 asserts that, under certain assumptions on the mean curvature17

function, the problem only has radially symmetric solutions. In this paper, we are18

going to consider only solutions with radial symmetry.19

We take a polar coordinate system centered at 0 ∈ B(R) and write the Euclidean20

metric as usual as21

dr2 + r2dΘ2,

where dΘ2 is the canonical metric of the (n − 1)-dimensional unit sphere. In22

addition, we suppose H : I × B(R) → R will be a radially symmetric smooth23

function.24

Under these considerations, passing to polar coordinates, Eq. (4) is reduced to25

the following ODE with mixed boundary conditions26

1
rn−1

(rn−1φ(v′))′ +
nf ′(ϕ−1(v))√

1 − v′2
=nH(ϕ−1(v), r)f(ϕ−1(v)) in ]0, R[,

v′(0) =0 = v(R),

(5)

where φ(s) := s√
1−s2 . By a solution we understand a function v ∈ C2]0, R[∩C1[0, R]27

with |v′| < 1 on ]0, R[ and satisfying the above mixed boundary value problem. From28

now on, we will work with this equation.29

3.2. Positivity of the solutions30

In this work, we are interested in spacelike graphs defined on a closed ball of the31

fiber, whose boundary is supported on the slice t = 0. In other words, the function32

1650006-7
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v, which define the graph, is strictly positive in the open ball, and it is zero at the1

boundary. In addition, the assertion of Theorem 3.1 suggests the search of condi-2

tions which ensure the positivity of the solutions. For the case of radial symmetry3

(Eq. (5)), we may state the following proposition.4

Proposition 3.3. Assume that5

(H) H(t, r) ≤ f ′

f
(t) and f ′(t) ≥ 0 for all r ∈ [0, R], t ∈ If (R).

Then, any v not identically zero solution of (5) verifies v > 0 on [0, R[.6

Proof. First, note that for all r ∈ ]0, R[,7

v′(r) = −φ−1

(
n

rn−1

∫ r

0

τn−1

[
−H(ϕ−1(v), τ)f(ϕ−1(v)) +

f ′(ϕ−1(v))√
1 − v′2

]
dτ

)
.

Taking into account (H) and that φ is an odd increasing diffeomorphism, we deduce8

that v is decreasing. Since v(R) = 0, we have v ≥ 0 on [0, R]. If v does not vanished9

identically, then v(0) > 0 and there exists r0 ∈ ]0, R[ where v′(r0) < 0. Then,10

we get11 ∫ r0

0

τn−1

[
−H(ϕ−1(v), τ)f(ϕ−1(v)) +

f ′(ϕ−1(v))√
1 − v′2

]
dτ > 0.

Since the integrant is positive on [0, R], this implies12 ∫ r

0

τn−1

[
−H(ϕ−1(v), τ)f(ϕ−1(v)) +

f ′(ϕ−1(v))√
1 − v′2

]
dτ > 0, for all r ≥ r0.

We deduce that v′(r) < 0 on [r0, R] and therefore, we conclude that v > 0 on13

[0, R[.14

3.3. Strictly spacelike character and bounds15

on the derivative of the solutions16

Graphs which are solution of (E) are spacelike on the open ball. However, there17

could exist solutions which are of light type on the boundary, ∂B. The following18

lemma ensures a priori that each possible solution v of (5) is spacelike on the19

boundary too, i.e. |v′| < 1 on [0, R].20

Lemma 3.4. Let v ∈ C2[0, R] be a solution of (5). Then |v′| < 1 on [0, R].21

Proof. On [0, R[ the solution satisfies |v′| < 1. We only have to prove the inequality22

at r = R. Suppose that there exists {rk} ⊂ ]0, R[ converging to R, such that23

lim
k→∞

|v′(rk)| = 1 and lim
k→∞

|φ(v′(rk))| = ∞.

1650006-8
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For k ∈ N sufficiently large, one has for r = rk,1

1
rn−1

(rn−1φ(v′))′ +
nf ′(ϕ−1(v))

v′
φ(v′) = nH(ϕ−1(v), r)f(ϕ−1(v)),

implying2

[rn−1φ(v′)]′

[rn−1φ(v′)]
= n

(
H(ϕ−1(v), r)f(ϕ−1(v))

φ(v′)
− f ′(ϕ−1(v))

v′

)
.

Let r ∈ ]0, R[ be such that |v′(τ)| > 0 for any τ ∈ ]r,R[. Integrating the last3

equality, we have4

log|rn−1
k φ(v′(rk))| − log|rn−1φ(v′(r))|

= n

∫ rk

r

(
H(ϕ−1(v), r)f(ϕ−1(v))

φ(v′)
− f ′(ϕ−1(v))

v′

)
dr.

Taking limits, we check that left member tends to infinity while the right one is5

finite. Therefore, we deduce that |φ(v′)| is bounded and, consequently, ‖v′‖∞ must6

be strictly lower than 1.7

In the next result, we provide an a priori bound of the derivative of the solutions8

on the boundary R. This fact will play a key role later.9

Proposition 3.5. There exists 0 < γ < 1 such that for any ε ∈ [0, 1], one has that10

any u ∈ C2[R/2, R] with u(R) = 0 and satisfying on ]R/2, R[ the equation11

1
(r + ε)n−1

((r + ε)n−1φ(u′))′ +
nf ′(ϕ−1(u))√

1 − u′2
= nH(ϕ−1(u), r)f(ϕ−1(u)),

satisfies |u′(R)| < γ.12

Proof. Let w+ : [R/2, R] → R be given by13

w+(r) =
∫ R−r

0

1√
1 + β(t)

dt,

where β(t) = α eλt, with α and λ constants which will be specified later. This type14

of function was used by Gerhardt in [22] for a similar purpose (see formula (2.9)15

therein).16

Clearly, for all r ∈ [R/2, R],17

|(w+)′(r)| =
1√

1 + β(R − r)
< 1.

Now, let u be satisfying the hypothesis and consider the elliptic operator depending18

on u19

Qu(v)(r) := − 1
(r + ε)n−1

[(r + ε)n−1φ(v′)]′ − nf ′(ϕ−1(u))√
1 − v′2

.

It follows that20

Qu(w+)(r) =
1√

β(R− r)

[
n− 1
r + ε

+
λ

2
− nf ′(ϕ−1(u))

√
1 + α eλ(R−r)

]
.

1650006-9
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Using that |u| < R/2 on [R/2, R], we can choose λ > 0 sufficiently large and α > 01

sufficiently small which do not depend on u and ε ∈ [0, 1] such that2

λ

2
+
n− 1
r + ε

− nf ′(ϕ−1(u))
√

1 + α eλ(R−r) > 0,

on [R/2, R]. Because of ε ∈ [0, 1], note that α and λ can be chosen independently of3

ε. In fact, the choice only depends on functions f and H . Hence, making α smaller4

if necessary, we can get5

Qu(w+) ≥ max
{
−nf(t)H(t, r) : r ∈

[
R

2
, R

]
, t ∈

[
−R

2
,
R

2

]}
,

implying that6

Qu(w+) ≥ Qu(u).

We have two situations. In the first one w+(R/2) ≥ u(R/2) and in the second7

w+(R/2) < u(R/2). Assume that we are in the second case and take8

K = max
[R/2,R]

|u′|.

Observe that K < 1 by Lemma 3.4. Then, there exists r0 ∈ ]R/2, R[ satisfying9

r0 − R

2
>
KR

2
.

So, we can consider αu < α such that10 
(
r0 − R

2

)2

(
u

(
R

2

)
− w+(r0)

)2 − 1

 e−λ R
2 > αu > 0.

It follows that, considering the function on [0, R/2] given by11

α(s) =


α if s ≤ R− r1,

h(s) if R− r1 ≤ s ≤ R− r0,

αu if R− r0 < s ≤ R

2
,

where r1 ∈ ]r0, R[, h is a decreasing function that makes α differentiable, and12

w+
u (r) :=

∫ R−r

0

1√
1 + α(t) eλt

dt, r ∈
[
R

2
, R

]
,

one has that w+
u (R/2) ≥ u(R/2). By a simple computation,13

Qu(w+
u ) ≥ Qu(w+).

1650006-10
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Hence, it follows that v = w+ or v = w+
u is an upper-solution of the original1

equation on [R/2, R], that is,2

Qu(v) ≥ Qu(u)

v(R) = u(R) = 0,

v

(
R

2

)
≥ u

(
R

2

)
.

Therefore, from Maximum Principle (see the Comparison Principle in [24, Theo-3

rem 4.4]) we conclude that4

v(r) ≥ u(r), r ∈
[(

R

2

)
, R

]
.

Since v(R) = u(R) and taking into account that v′(R) does not depend on u and5

ε, we deduce that6

u′(R) ≥ v′(R) =: γ+ > −1, |γ+| < 1.

Analogously, taking7

w−(r) := −
∫ R−r

0

1√
1 + β̂(t)

dt,

where β̂(t) = α̂ e
bλt, we have8

u′(R) ≤ v′(R) =: γ− < 1, |γ−| < 1,

where v = w− or v = w−
u9

Consequently, taking γ := max{|γ+|, |γ−|}, we conclude that10

|u′(R)| < γ < 1.

4. The Associated Dirichlet Problem: Existence Result11

In this section we give sufficient conditions for the existence of positive and radially12

symmetric solutions of problem (5).13

Throughout the section C[0, R] denotes the Banach space of the real continuous14

functions in [0, R], endowed with the maximum norm, and C1[a, b] the Banach space15

of continuously differentiable functions in [a, b] endowed with the usual norm.16

Our strategy consists on a truncation of the singular term, obtaining a family of17

problems tending to the original one, that can be solved through degree techniques.18

Then, we take the limit of the solutions of the truncated equations, and we have to19

prove that this limit is really a solution of the singular problem. Some arguments20

in our proof come from [27, Chap. 9] (see also the references therein), nevertheless21

the computations are essentially different because [27] only considers the case of22

a regular φ-Laplacian defined on the whole real line, whereas in our case the23

φ-Laplacian is singular.24

The main existence result goes as follows.25
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Theorem 4.1. If (A) and (H) hold true, then there exists at least one positive1

solution of problem (5).2

Proof. The proof is organized in three steps.3

• First step: Truncation4

First of all, we embed the initial problem into the family of mixed boundary value5

problems6

1
(r + ε)n−1

((r + ε)n−1φ(v′))′ +
nf ′(ϕ−1(v))√

1 − v′2
= nH(ϕ−1(v), r)f(ϕ−1(v)),

v′(0) = 0 = v(R),

(6)

where ε ∈ [0, 1]. Expanding the left member of the truncated equation and multi-7

plying by
√

1 − v′2, we get8

v′′

1 − v′2
= −(n− 1)

v′

r + ε
+ nf(ϕ−1(v))H(v, r)

√
1 − v′2 − nf ′(ϕ−1(v)). (7)

Since9

1
1 − v′2

=
1
2

(
1

1 + v′
+

1
1 − v′

)
,

we may rewrite the previous expression as follows10 [
1
2

log
(

1 + v′

1 − v′

)]′
= −(n− 1)

v′

r + ε

+nH(ϕ−1(v), r)f(ϕ−1(v))
√

1 − v′2 − nf ′(ϕ−1(v)).

We define11

ψ : ]−1, 1[→ R, ψ(s) =
1
2

log
(

1 + s

1 − s

)
,

which is an increasing diffeomorphism satisfying ψ(0) = 0. So, we have trans-12

formed the initial family of φ-Laplacians problems into the following ψ-Laplacians13

equations14

(ψ(v′))′ = −(n− 1)
v′

r + ε
+ nH(ϕ−1(v), r)f(ϕ−1(v))

√
1 − v′2 − nf ′(ϕ−1(v)),

v′(0) = 0 = v(R).

Note that our problem, corresponding to ε = 0, has now a singular term in zero,15

but the singularity on the derivative has disappeared.16

We denote by17

G : ]0, R]× [−R,R] × [−1, 1] → R

G(r, s, y) := −(n− 1)
y

r
+ nH(ϕ−1(s), r)f(ϕ−1(s))

√
1 − y2 − nf ′(ϕ−1(s)),
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and we define the family of functions depending on ε > 0,1

Gε : [0, R]× [−R,R] × [−1, 1] → R

Gε(r, s, y) = −(n− 1)
y

r + ε
+ nH(ϕ−1(s), r)f(ϕ−1(s))

√
1 − y2 − nf ′(ϕ−1(s)).

One clearly has2

Gε → G pointwise.

On the other hand, for each ε > 0,3

|Gε| ≤ n− 1
ε

+ nf∗H∗ + nf ′∗ =: Λ,

where4

f∗ = max
[−R,R]

f, f ′∗ = max
[−R,R]

|f ′| and

H∗ = max{|H(ϕ−1(s), r)| : r ∈ [0, R], s ∈ [−R,R]}.
From [8], for any ε > 0, the problem5

(ψ(v′))′ = Gε(r, v, v′), v′(0) = 0 = v(R),

has at least one solution vε ∈ C∞[0, R]. This is an immediate consequence of6

Schauder’s fixed point theorem.7

• Second step: Convergence of vε8

Firstly, because ‖vε‖∞ < R and ‖v′ε‖∞ < 1, using Ascoli–Arzela Theorem, passing9

if necessary to a subsequence, there exists v ∈ C[0, R] such that10

‖v − vε‖∞ → 0.

Note that11

v(R) = 0.

Consider 0 < a ≤ R. Looking to the expanded problem, we have for any r ∈ [a,R],12

|v′′ε (r)| ≤ (n− 1)
a

+ nf∗H∗ + nf ′∗,

implying that the family {v′ε}ε>0 is equicontinuous on [a,R]. Since ‖v′ε‖∞ < 1, it13

follows from the Ascoli–Arzela Theorem that there exists w ∈ C[a,R] such that14

v′ε → w in C[a,R].

It follows that v ∈ C1[a,R] and {vε} converges to v in C1[a,R].15

• Third step: The limit is a solution16

Clearly, from the previous steps we deduce that17

lim
ε→0+

Gε(r, vε(r), v′ε(r)) = G(r, v(r), v′(r)) for each r ∈ ]0, R].
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Now, choose an arbitrary r ∈ ]0, R[, and notice that1

(ψ(v′ε))
′ = Gε(τ, vε, v

′
ε) in [r,R].

Integrating between r and R, we infer that2

ψ(v′ε(R)) − ψ(v′ε(r)) =
∫ R

r

Gε(τ, vε(τ), v′ε(τ)) dτ.

Then, the Lebesgue Dominated Convergence Theorem and Proposition 3.5 imply3

that |v′| < 1 on ]0, R] and4

ψ(v′(R)) − ψ(v′(r)) =
∫ R

r

G(τ, v(τ), v′(τ)) dτ, r ∈ ]0, R].

It follows that5

(ψ(v′))′ = G(r, v, v′) in ]0, R]. (8)

Moreover,6 ∫ R

0

Gε(τ, vε(τ), v′ε(τ)) dτ = ψ(v′ε(R)).

Making use of the Proposition 3.5, there exists γ ∈ (0, 1) such that7

|ψ(v′ε(R))| < |ψ(γ)| for all ε > 0.

Then, we rewrite8

Gε(r, s, t) = −(n− 1)
t

r + ε
+ g(r, s, t),

where9

g(r, s, t) := nH(ϕ−1(s), r)f(ϕ−1(s))
√

1 − t2 − nf ′(ϕ−1(s)).

It is clear that the function r �→ g(r, vε(r), v′ε(r)) is integrable on [0, R]. Moreover,10

we have11

|g(r, vε(r), v′ε(r))| < nf∗H∗ + nf ′∗ =: K for any ε > 0.

Hence,12

(n− 1)

∣∣∣∣∣
∫ R

0

v′ε(τ)
τ + ε

dτ

∣∣∣∣∣ < RK + |ψ(γ)|.

On the other hand, from (6), we get13

v′ε(r) = −φ−1

[
n

(r + ε)n−1

∫ r

0

(τ + ε)n−1F (τ, vε(τ), v′ε(τ)) dτ
]
,

where14

F (r, s, t) := H(ϕ−1(s), r)f(ϕ−1(s)) − f ′(ϕ−1(s))√
1 − t2

.
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Now, using (H), one has that the integrand is positive and, therefore, v′ε is non-1

positive for all ε > 0. Thus,2

(n− 1)
∫ R

0

|v′ε(τ)|
τ + ε

dτ = (n− 1)

∣∣∣∣∣
∫ R

0

v′ε(τ)
τ + ε

dτ

∣∣∣∣∣ < RK + |ψ(γ)|. (9)

We deduce that, {−(n− 1) v′
ε(r)
r+ε }ε>0 is a set of positive integrable functions, satis-3

fying (9) and pointwise convergent to the function −(n − 1)v′(r)
r . Applying Fatou4

Lemma, we conclude that the limit is integrable on [0, R] and5

r �→ G(r, v(r), v′(r)) is integrable on [0, R].

Now we are in a position to prove that limr→0 v′(r) = 0. From integrability of6

r �→ v′(r)
r , it is clear that, if the limit exists, it should be 0. So, it suffices to prove7

the existence of limr→0 v
′(r). From (8), integrating from r to R, we obtain8

ψ(v′(r)) = ψ(v′(R)) −
∫ R

r

G(τ, v(τ), v′(τ))dτ.

Since τ �→ G(τ, v(τ), v′(τ)) is integrable on [0, R], the limit of the right member9

exists when r tends to 0. Therefore, by using that ψ is a diffeomorphism, we deduce10

the existence of limr→0 v
′(r). The proof is done.11

5. Proof of the Main Result12

Theorem 1.2 is a direct consequence of Theorems 3.1 and 4.1, which were proved13

in previous sections. To prove Theorem 1.1, once R is fixed, Theorem 4.1 provides14

a solution v of problem (5). Then, it suffices to guarantee that v can be continued15

until +∞ as a strictly decreasing solution. First, we can rewrite Eq. (7), with ε = 0,16

as a system of two ordinary differential equations of first order17

v′ = z,

z′ = (1 − z2)
(
−(n− 1)

z

r
+ n(f(ϕ−1(v))H(ϕ−1(v), r)

√
1 − z2 − n(f ′(ϕ−1(v))

)
,

which we can abbreviate18 [
v′

z′

]
= F(r, (v, z)),

where F : R
+ × J× ]−1 , 1[→ R

2.19

Let [0, b[ be the maximal interval of definition of v. Suppose that b < +∞. By the20

standard prolongability theorem of ordinary differential equations (see for instance21

[30, Sec. 2.5]), we have that the graph
{
(r, v(r), v′(r)) : r ∈ [R/2, b[

}
goes out of any22

compact subset of R
+×J× ]−1, 1[. However |v(r)| < b then, since R

− ⊂ J and v is23

decreasing, we know that v(r) ∈ [−b, R]. Moreover, by Lemma 3.4, |v′(r)| < ρ < 1.24

Therefore, the graph cannot go out of the compact subset [R/2 , b]× [−b, R]× [−ρ, ρ]25

contained in the domain of F . This is a contradiction, then b = +∞.26
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From R
− ⊂ ϕ(I) we have that f(t) tends to 0 when t goes to inf I. Then u′1

tends to 0 and, taking into account that u is strictly decreasing, we obtain the2

conclusion.3

6. Final Remarks and Applications4

It should be pointed out that the assumptions of the main result have a reasonable5

physical interpretation. In fact, the inequality f ′(t) ≥ 0 means that the divergence6

in the spacetime I ×f R
n of the reference frame ∂t is non-negative, which indicates7

that the comoving observers are on average spreading apart [29, p. 121] and so,8

for these observers, the universe is really expanding whenever f ′(t) > 0. On the9

other hand, the inequality H(t, r) ≤ (f ′/f)(t) expresses an above control of the10

prescription function by the Hubble function f ′/f of the spacetime I ×f R
n. This11

kind of inequality has been used to characterize the spacelike slices of some I×f R
n12

when n = 2 [28].13

Moreover, the family of FLRW spacetimes where the result may be applied is14

very wide, and it contains relevant relativistic spacetimes. Indeed, it includes the15

Lorentz–Minkowski spacetime (f = 1, I = R), the Einstein–De Sitter spacetime16

(I = ] − t0,+∞[, f(t) = (t + t0)2/3, with t0 > 0), and the steady state spacetime17

(I = R, f(t) = et), which is an open subset of the De Sitter spacetime.18

Computing the interval If (R) in the two previous cases, we obtain respectively,19

]−∞,−log(1 −R)[ and

]
−t0 +

(
t

1
3
0 − R

3

)3

,

(
R

3
+ t

1
3
0

)
− t0

[
,

and for the interval J = ϕ(I),20

]−∞, 1[ and ]−3t
1
3
0 ,∞[.

Observe that we can ensure the existence of radially symmetric spacelike graphs21

with prescribed mean curvature (under the hypotheses of Theorem 1.2) on a ball22

when the radius R is less than 1 and 3t1/3
0 respectively.23

Finally, note that for the steady state spacetime such a graph can be extended24

to the whole fiber R
n, because

∫ 0

−∞ e−sds = ∞. It is very easy to construct25

explicit examples of FLRW spacetimes leading to entire graphs tending to a26

hyperplane. For instance, I = ]−t0 ,+∞[ and f(t) = (t + t0)α, with t0 > 027

and α ≥ 1.28
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