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In this paper, using Leray–Schauder degree arguments and the method of lower and
upper solutions, we give existence and multiplicity results for periodic problems with
singular nonlinearities of the type„

u′
√

1 − u′2

«′
+ r(t)u +

n(t)

uλ
= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

where r, n, e : [0, T ] → R are continuous functions and λ > 0. We also consider some
singular nonlinearities arising in nonlinear elasticity or of Rayleigh–Plesset type.
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1. Introduction

In [1] it is proven that the periodic problem with an attractive nonlinearity(
u′√

1 − u′2

)′
+

1
uλ

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

where e ∈ C([0, T ]) and λ > 0, has at least one solution if and only if e := 1
T

∫ T

0
e >

0. Assuming that λ ≥ 1, in the same paper [1] it is shown that problem(
u′√

1 − u′2

)′
− 1
uλ

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),
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has at least one solution if and only if e < 0. The corresponding classical results (for
the operator u �→ u′′) are obtained in the seminal paper of Lazer and Solimini [13].

On the other hand, in [6] the authors give a Fredholm alternative-like result for
the periodic problem

u′′ + ru − 1
uλ

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (1)

where r is a constant, e ∈ C([0, T ]) and λ ≥ 1. More precisely, they show, using
Leray–Schauder degree theory, that (1) has at least one solution if r �= (kπ/T )2 for
all k ∈ Z. The first existence result for r ∈ (0, (π/T )2] and λ > 0 (including also the
weak case 0 < λ < 1) appears in [16]. Under this assumptions, in the mentioned
paper, it is proved, using the method of lower and upper solutions, that (1) has at
least one solution if

min
[0,T ]

e > −(1 + λ)
(
π2 − rT 2

λT 2

) λ
λ+1

.

In case r ∈ (0, (π/T )2), the main result in [18] provides the alternative condition

min
[0,T ]

e < 0, max
[0,T ]

e ≤ min[0,T ] e

cosλ

(√
rT

2

) +
√
r

T
sin(

√
rT )[min

[0,T ]
e]−

1
λ .

The main tool used in [18] is Krasnoselskii fixed point theorem on compressions
and expansions of cones. In the weak case 0 < λ < 1, if r ∈ (0, (π/T )2], and

max
[0,T ]

e < 0, min
[0,T ]

e ≥ (λ2 − 1)[rλλ
2λ2
1−λ ]

1
1+λ ,

then, it is shown in [19], using Schauder fixed point theorem, that (1) has at least
one solution.

It is interesting to remark that, in contrast to the classical case, the periodic
problem with relativistic acceleration(

u′√
1 − u′2

)′
+ ru = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

has at least one solution for any r �= 0 and any continuous forcing term e (see [1,
Corollary 3]). For this type of problems see, e.g., [12]. We will show that, in some
sense, the same situation occurs also if we add a singular nonlinearity.

In order to explain the main results of the paper, let us introduce some notation.
If x ∈ R, then we write x+ = max{x, 0} and x− = max{−x, 0}. For e ∈ C([0, T ])
we put

E =
∫ T

0

e(t)dt, E± =
∫ T

0

e±(t)dt,

and note that E = E+ − E−.
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Motivated by the above results from [1, 6, 16, 18, 19], we consider the periodic
problem(

u′√
1 − u′2

)′
+ r(t)u − 1

uλ
= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

where r, e ∈ C([0, T ]) and λ ≥ 1. If either r > 0 or r = 0 and e < −R−
2 , then we

prove that the above problem has at least one solution (see Example 2). In case
r < 0, we show (see Example 4) that the periodic problem(

u′√
1 − u′2

)′
+ r(t)u − m(t)

uλ
= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

with λ > 0 (so, the weak case is included) and m ∈ C([0, T ]) such that m ≥ 0, is
solvable provided that

−E > (1 + λ)
[ |R|λM

λλ

] 1
1+λ

+
T

2
R−.

On the other hand, in the attractive case, we consider the problem(
u′√

1 − u′2

)′
+ r(t)u +

m(t)
uλ

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (2)

where r,m, e ∈ C([0, T ]) with m ≥ 0 and λ > 0. If either r < 0 or r = 0, and in
both cases,

E < M

(
2
T

)λ

− T

2
R−,

then, we show (see Example 5 and Proposition 1) that the above problem has at
least one solution. Moreover, in the pure attractive case, that is m > 0, one has
that (2) is solvable if either r < 0 or r = 0 and E > T

2R+ (Proposition 2).
The paper is organized as follows. In Sec. 2 we introduce some notation and

auxiliary results (almost all taken from [1]). In Sec. 3 we improve Theorem 4 from [1]
and give two applications. In the first one we consider strong repulsive nonlinearities
and in the second one we study nonlinearities null at infinity. In Sec. 4 we introduce
some methods to construct lower and upper solutions and in the last section we
prove the previous results. We also consider some singular nonlinearities arising in
nonlinear elasticity or of Rayleigh–Plesset type.

If Ω is an open bounded subset in a Banach space X and S : Ω → X is compact,
with 0 /∈ (I−S)(∂Ω), then dLS[I−S,Ω, 0] will denote the Leray–Schauder degree of
S with respect to Ω and 0. For the definition and properties of the Leray–Schauder
degree we refer the reader to, e.g., [5].

For other results concerning periodic solutions of nonlinear perturbations of the

relativistic operator u �→
(

u′√
1−u′2

)′
see, e.g., [3, 4, 7, 14, 20].
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2. Some Notation and Auxiliary Results

Let C0 denote the Banach space of continuous functions on [0, T ] endowed with
the uniform norm ‖ ·‖∞, C1 denote the Banach space of continuously differentiable
functions on [0, T ] equipped with the norm

‖u‖ = ‖u‖∞ + ‖u′‖∞ (u ∈ C1).

Let P,Q : C0 → C0 be the continuous projectors defined by

Pu(t) = u(0), u = Qu(t) =
1
T

∫ T

0

u(τ)dτ (t ∈ [0, T ]),

and define the continuous linear operator H : C0 → C1 by

Hu(t) =
∫ t

0

u(τ)dτ (t ∈ [0, T ]).

If u ∈ C0 we write

ũ = u− u,

and we shall consider the following closed subspaces of C1:

C1
� = {u ∈ C1 : u(0) − u(T ) = 0 = u′(0) − u′(T )},

C̃1
� = {u ∈ C1

� : u = 0}.
The following assumption upon φ (called singular) is made throughout the paper:

(Hφ) φ : (−a, a) → R is an increasing homeomorphism such that φ(0) = 0 and
0 < a <∞.

The model example is

φ(s) =
s√

1 − s2
(s ∈ (−1, 1)).

We recall the following technical result given as Lemma 1 from [1].

Lemma 1. For each h ∈ C0 there exists a unique Qφ(h) ∈ R such that

Q ◦ φ−1 ◦ (I −Qφ) ◦ h = 0.

Moreover, the function Qφ : C0 → R is continuous.

We recall also the following fixed point result introduced in [1].

Lemma 2. Let F : C1 → C0 be a continuous operator which takes bounded sets
into bounded sets and consider the abstract periodic problem

(φ(u′))′ = F (u), u(0) − u(T ) = 0 = u′(0) − u′(T ). (3)
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A function u is solution of (3) if and only if u ∈ C1
� is a fixed point of the completely

continuous operator MF : C1
� → C1

� defined by

MF = P +QF +H ◦ φ−1 ◦ (I −Qφ) ◦ [H(I −Q)F ].

Furthermore, ‖(MF (u))′‖∞ < a for all u ∈ C1
� and

‖ũ‖∞ < aT, (4)

for any solution u of (3).

To each continuous function f : [0, T ] × R
2 → R, we associated its Nemytskii

operator Nf : C1 → C0 given by

Nf (u) = f(·, u(·), u′(·)) (u ∈ C1).

One has that Nf is continuous and takes bounded sets into bounded sets.
Next, consider the periodic boundary value problem

(φ(u′))′ = Nf (u), u(0) − u(T ) = 0 = u′(0) − u′(T ). (5)

We will write Mf instead of MNf
, the fixed point operator associated to (5), given

by Lemma 2.
If u, v ∈ C0 are such that u(t) ≤ v(t) for all t ∈ [0, T ], we write u ≤ v. Also,

we write u < v if u(t) < v(t) for all t ∈ [0, T ]. One has the following (see [1,
Definition 1]).

Definition 1. A lower solution α (respectively, an upper solution β) of (5) is a
function α ∈ C1 such that ‖α′‖∞ < a, φ(α′) ∈ C1, α(0) = α(T ), α′(0) ≥ α′(T )
(respectively, β ∈ C1, ‖β′‖∞ < a, φ(β′) ∈ C1, β(0) = β(T ), β′(0) ≤ β′(T )) and

(φ(α′))′ ≥ Nf (α) (respectively, (φ(β′))′ ≤ Nf (β)). (6)

Such a lower or an upper solution is called strict if the inequality (6) is strict.

We need also the following result given as in [1, Theorem 3].

Lemma 3. If (5) has a lower solution α and an upper solution β such that α ≤ β,

then (5) has a solution u such that α ≤ u ≤ β. Moreover, if α and β are strict, then
α < u < β, and

dLS[I −Mf ,Ωα,β, 0] = −1,

where

Ωα,β = {u ∈ C1
� : α < u < β, ‖u′‖∞ < a}.

An easy adaption of the proof of [1, Theorem 3] provides the following useful
result.

Lemma 4. Assume that (5) has a lower solution α and an upper solution β such
that α < β and

u �= Mf (u) for all u ∈ ∂Ωα,β . (7)
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Then, one has that

dLS[I −Mf ,Ωα,β, 0] = −1.

The following result is a particular case of [1, Lemma 4] and is a direct con-
sequence of Schauder’s fixed point theorem applied to the equivalent fixed point
problem.

Lemma 5. The periodic problem

(φ(ũ′))′ = (I −Q)Nf(σ + ũ), ũ ∈ C̃1
� , (8)

has at least one solution for all σ ∈ R.

The next result is an elementary estimation of the oscillation of a periodic
function.

Lemma 6. If u : R → R is a continuously differentiable and T -periodic function,
then

max
[0,T ]

u− min
[0,T ]

u ≤ T

2
‖u′‖∞.

Proof. Let t∗ ∈ [0, T ) be such that u(t∗) = min[0,T ] u and t∗ ∈ [t∗, t∗ + T ] be such
that u(t∗) = max[0,T ] u. One has that

u(t∗) − u(t∗) =
∫ t∗

t∗
u′(s)ds ≤ ‖u′‖∞(t∗ − t∗),

u(t∗) − u(t∗) = −
∫ t∗+T

t∗
u′(s)ds ≤ ‖u′‖∞(t∗ + T − t∗).

Then, multiplying both inequalities and using that xy ≤ (x+ y)2/4 for all x, y ∈ R,

it follows that

(u(t∗) − u(t∗))2 ≤ (‖u′‖∞T )2

4
,

and the proof is completed.

3. Non-Well-Ordered Lower and Upper Solution and Applications

In [1] it is proved that problem (5) has at least one solution if it has a lower and
an upper solution. In the following result we prove some additional information
concerning the location of the solution. In particular we have some a posteriori
estimations which will be very useful in the sequel (see Remark 1). We use some
ideas from the proof of [15, Theorem 8.10].
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Theorem 1. Assume that (5) has a lower solution α and an upper solution β such
that

∃ τ ∈ [0, T ]: α(τ) > β(τ). (9)

Then, (5) has at least one solution u such that

min{α(tu), β(tu)} ≤ u(tu) ≤ max{α(tu), β(tu)}, (10)

for some tu ∈ [0, T ].

Proof. Consider

u∗ = ‖α‖∞ + ‖β‖∞ + aT,

m = max{|f(t, u, v)| + 1 : (t, u, v) ∈ [0, T ]× [−u∗ − 2, u∗ + 2] × [−a, a]},
and define the continuous function h : [0, T ]× R

2 → R by

h(t, u, v) =



−m− 1, u ≤ −u∗ − 1,

f(t, u, v) + (u+ u∗)(m+ 1 + f(t, u, v)), −u∗ − 1 < u < −u∗,
f(t, u, v), −u∗ ≤ u ≤ u∗,

f(t, u, v) + (u− u∗)m, u∗ < u < u∗ + 1,

f(t, u, v) +m, u ≥ u∗ + 1.

Next, consider the modified periodic problem

(φ(u′))′ = h(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ), (11)

and let Mh be the fixed point operator associated to (11).
One has that α is a lower solution and β is an upper solution of the modified

problem (11). Moreover, α1 = −u∗ − 2 is a lower solution of (11) and β1 = u∗ + 2
is an upper solution of (11). Notice that

α1 < min{α, β} ≤ max{α, β} < β1,

which together with (9) imply that

Ωα1,β ∪ Ωα,β1 ⊂ Ωα1,β1 , Ωα1,β ∩ Ωα,β1 = ∅.
So, we can consider the open bounded set

Ω = Ωα1,β1\[Ωα1,β ∪ Ωα,β1 ].

It follows that

Ω = {u ∈ Ωα1,β1 : u(tu) > β(tu), u(su) < α(su) for some tu, su ∈ [0, T ]}
and

∂Ω = ∂Ωα1,β1 ∪ ∂Ωα1,β ∪ ∂Ωα,β1 .

One has that any constant function between β(τ) and α(τ) is contained in Ω, so Ω
is a non-empty set.
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Next, let us consider u ∈ ∂Ω such that Mh(u) = u and ‖u‖∞ = u∗ + 2. Notice
that one has ‖u′‖∞ < a. This implies that there exists t0 ∈ [0, T ] such that u(t0) =
max[0,T ] u = u∗ +2 or u(t0) = min[0,T ] u = −u∗−2. In the first case we can assume
that t0 ∈ [0, T ) and then u′(t0) = 0 and there exists ε > 0 such that u(t) > u∗ + 1
for all t ∈ [t0, t0 + ε]. So,

(φ(u′(t)))′ = f(t, u(t), u′(t)) +m > 0 for all t ∈ [t0, t0 + ε],

implying that u′ is strictly increasing on [t0, t0 + ε] and then u′(t) > 0 for all t ∈
(t0, t0 +ε]. It follows that u is strictly increasing on [t0, t0 +ε], which is a contradic-
tion. Analogously, one can obtain a contradiction in the second case. Consequently,

[u ∈ ∂Ω, Mh(u) = u] ⇒ ‖u‖∞ < u∗ + 2. (12)

Now, let u ∈ ∂Ω be such that Mh(u) = u. It follows from (12) that ‖u‖∞ <

u∗ + 2, ‖u′‖∞ < a, and u ∈ ∂Ωα1,β ∪ ∂Ωα,β1 . We infer that there exists t0 ∈ [0, T ]
such that u(t0) = α(t0) or u(t0) = β(t0), implying that |u(t0)| ≤ ‖α‖∞ + ‖β‖∞.
Then,

|u(t)| ≤ |u(t0)| +
∫ T

0

|u′(t)|dt < u∗ for all t ∈ [0, T ],

and, consequently,

[u ∈ ∂Ω, Mh(u) = u] ⇒ ‖u‖∞ < u∗. (13)

We have two cases.

Case 1. Assume that there exists u ∈ ∂Ω such that Mh(u) = u. Using (13),
we deduce that ‖u‖∞ < u∗, implying that u is a solution of (5) and (10) holds
true. Actually, in this case there exists tu ∈ [0, T ] such that u(tu) = α(tu) or
u(tu) = β(tu).

Case 2. Assume that Mh(u) �= u for all u ∈ ∂Ω. Then, from Lemma 4 applied to
h, it follows that

dLS[I −Mh,Ωα1,β1, 0] = dLS[I −Mh,Ωα1,β , 0]

= dLS[I −Mh,Ωα,β1 , 0]

= −1.

This together with the additivity property of the Leray–Schauder degree imply that

dLS[I −Mh,Ω, 0] = 1,

which together with the existence property of the Leray–Schauder degree imply that
there exists u ∈ Ω such that Mh(u) = u. It follows that there exists t1, t2 ∈ [0, T ]
such that u(t1) < α(t1) and u(t2) > β(t2). Then, using once again that ‖u′‖∞ < a,

it follows that ‖u‖∞ < u∗, and u is a solution of (5). Moreover, from u ∈ Ω it
follows that (10) holds true.
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Remark 1. Assume that (5) has a lower solution α and an upper solution β. From
Lemma 3 and Theorem 1, we deduce that (5) has at least one solution u satisfying
(10). In particular,

‖u‖∞ < ‖α‖∞ + ‖β‖∞ + aT.

3.1. Lower and upper solutions method for strong singular

problems

In our first application of the previous theorem we deal with singular strong non-
linearities. Consider the periodic problem

(φ(u′))′ + h(u)u′ = g(u) + f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ), (14)

where f : [0, T ]×R
2 → R and h, g : (0,∞) → R are continuous functions such that

the following strong force condition is satisfied∫ 1

0

g(t)dt = +∞, (15)

and assume that h ≥ 0. Under those assumptions we have the following theorem.

Theorem 2. Assume that (14) has a lower solution α > 0 and an upper solution
β > 0. Then (14) has at least one solution u which satisfies (10).

Proof. If α ≤ β then the result follows from Lemma 3 and [1, Remark 8] (without
any additional assumption). Assume now that (9) holds true and define

δ = min
[0,T ]

min{α, β}, B = ‖α‖∞ + ‖β‖∞ + aT,

m = max
[0,T ]×[−B,B]×[−a,a]

|f |, K = mTa+
∫ B

δ

|g(s)|ds.

From (15) it follows that

∃ ε ∈ (0, δ): g(ε) > 0 and
∫ δ

ε

g(s)ds > K. (16)

Let ĝ, ĥ : R → R be the continuous functions given by

ĝ(u) =

{
g(u), u ≥ ε,

g(ε), u ≤ ε,
ĥ(u) =

{
h(u), u ≥ ε,

h(ε), u ≤ ε,

and consider the modified periodic problem

(φ(u′))′ + ĥ(u)u′ = ĝ(u) + f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ). (17)

From ε < δ it follows that α and β are lower and upper solutions of (17), respec-
tively. Then, using Theorem 1 and Remark 1 it follows that (17) has a solution u
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which satisfies (10) and such that

−B ≤ u ≤ B, ‖u′‖∞ < a. (18)

We shall prove that u > ε. Consider t0, t1 ∈ [0, T ] such that u(t0) = min[0,T ] u and
u(t1) = max[0,T ] u. Assume by contradiction that u(t0) ≤ ε. From Theorem 1 one
has that

u(t1) ≥ δ. (19)

Assume that t0 ≤ t1 and notice that u′(t0) = 0 = u′(t1). Putting x = φ ◦ u′, one
has that u′ = φ−1 ◦ x, x(t0) = 0 = x(t1) and∫ t1

t0

(φ(u′(t)))′u′(t)dt =
∫ t1

t0

x′(t)φ−1(x(t))dt

=
∫ x(t1)

x(t0)

φ−1(y)dy

= 0.

Using that x(0) = x(T ) and a similar computation, we infer that∫ T

0

(φ(u′(t)))′u′(t)dt = 0.

So, multiplying (17) by u′ and integrating on [0, T ]\[t0, t1], it follows that∫
[0,T ]\[t0,t1]

ĥ(u)u′2dt = −
∫ t1

t0

ĝ(u)u′dt+
∫

[0,T ]\[t0,t1]

f(t, u, u′)u′dt,

which together with (18) and the positivity of h imply that∫ u(t1)

u(t0)

ĝ(t)dt ≤ mTa. (20)

From (16), (19) and (20) we deduce that∫ δ

ε

g(t)dt =
∫ u(t1)

u(t0)

ĝ(t)dt− g(ε)(ε− u(t0)) −
∫ u(t1)

δ

g(t)dt ≤ K,

which is a contradiction with (16). Similar considerations hold also when t1 ≤ t0
using integration on [t1, t0]. Consequently, u > ε, implying that u is also a solution
of (14).

Remark 2. The above result holds also with similar arguments when h ≤ 0.
Actually, it can be assumed that h : (0,∞) → R is a continuous function having

limit (finite or not) at 0. It suffices to remark that (14) can be written as

(φ(u′))′ + h+(u)u′ − h−(u)u′ = g(u) + f(t, u, u′),

u(0) − u(T ) = 0 = u′(0) − u′(T ),

and, in this case h+ or h− has no singularity at 0.
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3.2. Nonlinearities null at infinity

Next application deal with nonlinearities null at infinity. This type of nonlinearities
has been introduced in [8]. We consider the periodic problem

(φ(u′))′ + f(t, u) = s+ ẽ(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (21)

where f : [0, T ] × R → R is a continuous function, ẽ ∈ C0 with
∫ T

0
ẽ(t)dt = 0 and

s ∈ R is a parameter. We have the following theorem.

Theorem 3. Assume that

f(t, u) → 0 if |u| → ∞ uniformly with t ∈ [0, T ], (22)

and that there exists µ ∈ C0 with µ > 0 such that

lim inf
|u|→∞

uf(t, u) > µ(t) uniformly with t ∈ [0, T ]. (23)

Then, there exists ε1 < 0 < ε2 such that (21) has no solutions if s /∈ [ε1, ε2] and at
least one solution if s ∈ [ε1, ε2]. Moreover, if s ∈ (ε1, ε2) and s �= 0, then (21) has
at least two solutions.

Proof. For every fixed integer k ∈ Z, let us consider the periodic problem

(φ(ũ′))′ + f(t, k + ũ) − ẽ(t) =
1
T

∫ T

0

f(τ, k + ũ)dτ

ũ(0) − ũ(T ) = 0 = ũ′(0) − ũ′(T ).
(24)

Then, taking into account that
∫ T

0
ẽ(t)dt = 0 it follows from Lemma 5 that (24)

has at least one solution ũk ∈ C̃1
� . Notice that uk := k + ũk is a solution of (21)

for s = 1
T

∫ T

0
f(τ, uk)dτ. So, in particular, there exists at least one s ∈ R such that

(21) has at least one solution.
Next, let us define

Sj = {s ∈ R : (21) has at least j solutions} (j = 1, 2)

and ε1 = inf S1, ε2 = supS1. Using that f is bounded on [0, T ] × R
2 and

1
T

∫ T

0
f(τ, u)dτ = s for any solution u of (21), we infer that ε1, ε2 are finite.

Now, we will prove that ε1 < 0 < ε2. It suffices to prove that there exists δ > 0
such that [−δ, δ] ⊂ S1. One has that

∃ k0 ≥ 1, ∀ s ≤ µ

4k0
:

1
T

∫ T

0

f(τ, uk0)dτ ≥ s. (25)

Assume by contradiction that

∀ k ≥ 1, ∃ sk ≤ µ

4k
:

1
T

∫ T

0

f(τ, uk)dτ < sk.
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Using (22), (23) and the fact that ‖ũk‖∞ < aT for all k ∈ Z, it follows that there
exists K ≥ 1 such that

1
T

∫ T

0

f(τ, uk)ukdτ ≥ µ

and

1
T

∫ T

0

f(τ, uk)ũkdτ ≤ µ

4

for all k ≥ K. It follows that

0 >
k

T

∫ T

0

f(τ, uk)dτ − ksk

=
1
T

∫ T

0

f(τ, uk)ukdτ − 1
T

∫ T

0

f(τ, uk)ũkdτ − ksk

≥ µ

2
, for all k ≥ K,

which is a contradiction with the assumption µ > 0. So, (25) holds true. This
implies that uk0 is a lower solution of (21) for all s ≤ µ

4k0
. Analogously, it follows

that there exists k1 ≤ −1 such that uk1 is an upper solution of (21) for all s ≥ µ
4k1

.

Then, [−δ, δ] ⊂ S1, just taking δ sufficiently small and applying Theorem 4 of [1].
Next, let us prove that (0, ε2) ⊂ S2. Consider s ∈ (0, ε2). It follows that there

exists ŝ > s such that ŝ ∈ S1, so, (21) has at least one solution α for s = ŝ.

Then, α is a strict lower solution of (21). Using once again (22) and the fact that
‖ũk‖∞ < aT for all k ∈ Z, it follows that there exists k ≥ 1 sufficiently large such
that u−k < α < uk and

1
T

∫ T

0

f(τ, uj)dτ < s (j = −k, k).

It follows that u−k, uk are strict upper solutions for (21). Then, from Lemma 3 we
infer that (21) has a solution v1 such that α < v1 < uk. On the other hand, from
Theorem 1, it follows that (21) has a solution v2 such that u−k(t) ≤ v2(t) ≤ α(t) for
some t ∈ [0, T ]. Hence, v1 �= v2 and s ∈ S2. Analogously, one has that (ε2, 0) ⊂ S2.

Finally, let us prove that ε2 ∈ S1. Consider a sequence {sn} in (0, ε2) converging
to ε2 and un a solution of (21) with s = sn. Notice that

1
T

∫ T

0

f(τ, un)dτ = sn (n ∈ N),

which together with ‖ũn‖∞ < aT for all n ∈ N, ε2 > 0 and (22) imply that {un} is
a bounded sequence. Consequently, {un} is a bounded sequence in C1 and a simple
application of the Arzela–Ascoli’s theorem implies that {un} has a subsequence
converging uniformly to some u ∈ C0 which is a solution of (21) with s = ε2.

Analogously, one has that ε1 ∈ S1.
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Periodic Solutions for Singular Perturbations of the Singular φ-Laplacian Operator

Example 1. Let ẽ ∈ C0 with
∫ T

0
ẽ(t)dt = 0 and consider the periodic problem(

u′√
1 − u′2

)′
+

u

1 + u2
= s+ ẽ(t), u(0) − u(T ) = 0 = u′(0) − u′(T ). (26)

There exists ε1 < 0 < ε2 such that (26) has no solutions if s /∈ [ε1, ε2] and at least
one solution if s ∈ [ε1, ε2]. Moreover, if s ∈ (ε1, ε2) and s �= 0, then (26) has at least
two solutions.

Remark 3. It is interesting to note that in [2], using a completely different strategy
based upon Leray–Schauder degree arguments, the authors deal with nonlinearities
f null at infinity such that f > 0.

4. Constructing Lower and Upper Solutions

We consider the following periodic problem:

(φ(u′))′ = g0(t, u) + e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (27)

where g0 : [0, T ]× (0,∞) → R is a continuous singular nonlinearity and e ∈ C0.

The following result gives a method to construct a lower solution to (27), getting
also control on its localization.

Theorem 4. Let us assume that there exist x1 > 0 and c ∈ C0 such that

g0(t, x) ≤ c(t), ∀(t, x) ∈ [0, T ]×
[
x1, x1 +

aT

2

]
. (28)

If

c+ e ≤ 0, (29)

then (27) has a lower solution α such that

x1 ≤ α < x1 +
aT

2
. (30)

Proof. Consider the function ψ = c+ e. We have two cases.

Case 1. Assume that Ψ+ = 0. Taking α ≡ x1 and using that c+ e ≤ 0, it follows
from (28) that α is a lower solution of (27).

Case 2. Assume that Ψ+ > 0. Using∫ T

0

[ψ+(t)Ψ− − ψ−(t)Ψ+]dt = 0
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and [1, Proposition 1], it follows that there exists w such that

(φ(w′))′ = ψ+(t)Ψ− − ψ−(t)Ψ+, w(0) − w(T ) = 0 = w′(0) − w′(T ).

Let us take x0 = 1/Ψ+ and

α = x1 +H ◦ φ−1 ◦ [I −Qφ](x0φ(w′)) − min
[0,T ]

{H ◦ φ−1 ◦ [I −Qφ](x0φ(w′))}.

The definition of Qφ implies α(0) = α(T ). On the other hand, one has that

α′ = φ−1 ◦ [I −Qφ](x0φ(w′)),

implying that α′(0) = α′(T ). Then, Lemma 6 implies (30). Now, using (29), it
follows that Ψ+ ≤ Ψ−, implying that

(φ(α′))′ = x0(φ(w′))′ = x0[ψ+Ψ− − ψ−Ψ+] ≥ ψ.

From (28) and (30) we deduce that

g0(t, α(t)) + e(t) ≤ ψ(t), ∀ t ∈ [0.T ].

Consequently

(φ(α′(t)))′ ≥ g0(t, α(t)) + e(t), ∀ t ∈ [0.T ],

and the proof is completed.

Using similar arguments, one can prove the following theorem.

Theorem 5. Let us assume that there exist x2 > 0 and d ∈ C0 such that

g0(t, x) ≥ d(t), ∀(t, x) ∈ [0, T ]×
[
x2, x2 +

aT

2

]
. (31)

If

d+ e ≥ 0, (32)

then (27) has an upper solution β such that

x2 ≤ β < x2 +
aT

2
.

5. Applications

In this section, combining the method of upper and lower solutions (Lemma 3 and
Theorem 2) with the results from the previous section, we give various existence
and multiplicity results concerning periodic solutions for singular perturbations of

the relativistic operator u �→
(

u′√
1−u′2

)′
.
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5.1. Strong repulsive perturbations

Consider the problem

(φ(u′))′ + r(t)u − g(u) = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (33)

where r, e ∈ C0 and g : (0,∞) → R is continuous and satisfies

lim
x→0

g(x) = +∞, lim
x→∞ g(x) = 0,

∫ 1

0

g(x)dx = +∞. (34)

The main result of this subsection is the following theorem.

Theorem 6. Assume that (34) holds true. If either

r > 0

or

r = 0, e < −aR−
2

,

then problem (33) has at least one solution.

Proof. Notice that from (34) it follows that there exists a constant β sufficiently
small such that β is an upper solution of (33).

In order to apply Theorem 4 we introduce some notation. Consider the contin-
uous functions g0 : [0, T ]× (0,∞) → R given by

g0(t, x) = −r(t)x + g(x),

g∗ : (0,+∞) −→ R defined by

g∗(x) = max
[x,x+aT

2 ]
g,

and γ∗ : (0,∞) → R given by

γ∗(x) = −Rx+
aT

2
R− + Tg∗(x).

Case 1. Assume that r > 0. This together with (34) imply that

lim
x→∞ γ∗(x) = −∞,

so there exists x1 > 0 such that γ∗(x1) ≤ −E. In order to apply Theorem 4, let us
take

c(t) = r−(t)
(
x1 +

aT

2

)
− r+(t)x1 + g∗(x1) (t ∈ [0, T ]). (35)
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It follows that C = γ∗(x1) and C +E ≤ 0, meaning that condition (29) holds true.
One has that

g0(t, x) = r−(t)x − r+(t)x + g(x)

≤ r−(t)
(
x1 +

aT

2

)
− r+(t)x1 + g∗(x1),

for all (t, x) ∈ [0, T ] × [x1, x1 + aT
2 ]. So, condition (28) is fulfilled. Then, from

Theorem 4 we infer that (33) has a lower solution α. Now the result follows from
Theorem 2.

Case 2. Assume that r = 0 and e < −aR−
2 . It follows that

γ∗(x) =
aT

2
R− + g∗(x), lim

x→∞ γ∗(x) =
aT

2
R−.

Then, there exists x1 > 0 such that γ∗(x1) ≤ −E. The result follows now exactly
like in Case 1.

Remark 4. Theorem 8 in [1] follows from Theorem 6 just taking r = 0.

Example 2. Consider the problem(
u′√

1 − u′2

)′
+ r(t)u − 1

uν
= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (36)

where r, e ∈ C0 and ν ≥ 1. If either r > 0 or r = 0 and e < −R−
2 , then (36) has at

least one solution.
In case r < 0 there exists s0 < 0 such that (36) has at least two solutions

provided e ≤ s0 holds true. Indeed, in this case problem (36) has two strict upper
solutions β1, β2 > 0 and a strict lower solution α > 0 such that β1 < α < β2. Hence,
the result follows from Lemma 3 and Theorem 2.

If 0 < ν < 1 and r = 0, then, using similar arguments like in [13], it follows that
there exists e ∈ C0 such that (36) has no solutions.

Example 3. If ν ≥ 1, it follows from the previous example that the Brillouin
beam-focusing equation with relativistic effects(

u′√
1 − u′2

)′
+ (b1 + b2 cos t)u =

1
uν
, u(0) − u(2π) = 0 = u′(0) − u′(2π),

has at least one solution for any b1 > 0 and b2 ∈ R.

In the classical case, it has been proved in [21] that the periodic problem

u′′ + b1(1 + cos t)u =
1
uν
, u(0) − u(2π) = 0 = u′(0) − u′(2π),

has at least one solution for any 0 < b1 < 0, 16488. In case ν = 1, it is proven in
[17] that the above problem has at least one solution for any 0 < b1 < 1. The main
tool used in [17, 21] is Mawhin’s coincidence degree theory.
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5.2. Mixed singularities

Consider the periodic problem

(φ(u′))′ + r(t)u + g(t, u) = e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ) (37)

where r, e ∈ C0 and g : [0, T ]× (0,∞) → R is continuous and satisfies

lim
x→∞ g(t, x) = 0 uniformly with t ∈ [0, T ]. (38)

Let us introduce the continuous functions g0 : [0, T ]× (0,∞) → R given by

g0(t, x) = −r(t)x− g(t, x),

g∗, g∗ : [0, T ]× (0,∞) → R defined by

g∗(t, x) = min
[x,x+ aT

2 ]
g(t, ·), g∗(t, x) = max

[x,x+aT
2 ]
g(t, ·),

and γ∗ :
(

aT
2 ,∞

) → R, γ∗ : (0,∞) → R, given by

γ∗(x) = −Rx+
aT

2
R+ −

∫ T

0

g∗

(
t, x− aT

2

)
dt,

γ∗(x) = −Rx− aT

2
R+ −

∫ T

0

g∗(t, x)dt.

The key result of this subsection is the following lemma.

Lemma 7. Assume that (38) holds true and consider γm
∗ := inf γ∗. If r < 0 and

−E > γm
∗ , then (37) has at least one solution.

Proof. Since −E > γm
∗ , there exists z > aT

2 such that γ∗(z) ≤ −E. Let us define
x1 = z − aT

2 > 0 and c ∈ C0 by

c(t) = r−(t)
(
x1 +

aT

2

)
− r+(t)x1 − g∗(t, x1).

Then, it follows that conditions (28) and (29) hold true. Hence, from Theorem 4
we infer that (37) has a lower solution α such that x1 ≤ α < x1 + aT

2 .

One the other hand, using that r < 0, there exists x2 ≥ z such that γ∗(x2) ≥
−E. Consider d ∈ C0 by

d(t) = r−(t)x2 − r+(t)
(
x2 +

aT

2

)
− g∗(t, x2).

Then, it follows that conditions (31) and (32) hold true. Hence, from Theorem 5
we infer that (37) has an upper solution β such that x2 ≤ β < x2 + aT

2 .

Consequently, (37) has a lower solution α and an upper solution β such that
α ≤ β. The result follows now from Lemma 3.
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Consider now the periodic problem

(φ(u′))′ + r(t)u +
n(t)
uλ

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (39)

where r, n, e ∈ C0 and λ > 0. We have the following theorem.

Theorem 7. If r < 0 and

−E > (1 + λ)
[ |R|λN−

λλ

] 1
1+λ

+
aT

2
R− −N+

[
aT

2
+

(
λN−
|R|

) 1
1+λ

]−λ

, (40)

then (39) has at least one solution.

Proof. We have two cases.

Case 1. Assume that N− = 0. In this case one has that

γ∗(x) = −Rx+
aT

2
R+ − N+

xλ
,

implying that γm
∗ = γ∗(aT/2). So, (40) becomes −E > γm

∗ , and the result follows
from Lemma 7.

Case 2. Assume that N− > 0. Notice that the minimum of x �→ −Rx+ aT
2 R+ +

N−
(x− aT

2 )λ is attained in x0 = aT
2 + [λN−

|R| ]
1

λ+1 and

γ∗(x0) ≤ −Rx0 +
aT

2
R+ +

N−(
x0 − aT

2

)λ
− N+

xλ
0

.

But, the right-hand side in the previous inequality is just the right-hand side in
(40). Hence, from (40) we infer that −E > γm∗ , and the result follows again from
Lemma 7.

Example 4. Consider the periodic problem with repulsive singularity (possibly
weak!)(

u′√
1 − u′2

)′
+ r(t)u − m(t)

uλ
= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ),

where r,m, e ∈ C0 with m ≥ 0 and λ > 0. If r < 0 and

−E > (1 + λ)
[ |R|λM

λλ

] 1
1+λ

+
T

2
R−,

then the above problem has at least one solution.
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Example 5. Consider the periodic problem with attractive singularity(
u′√

1 − u′2

)′
+ r(t)u +

m(t)
uλ

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (41)

where r,m, e ∈ C0 with m ≥ 0 and λ > 0. If r < 0 and

E < M

(
2
T

)λ

− T

2
R−,

then the above problem has at least one solution.

In connection with Example 5, if r = 0, then we have the following proposition.

Proposition 1. Consider the periodic problem with attractive singularity

(φ(u′))′ +
m(t)
uλ

= e(t), u(0) − u(T ) = 0 = u′(0) − u′(T ), (42)

where m, e ∈ C0 such that m ≥ 0 and λ > 0. If

0 < E < M

(
2
aT

)λ

, (43)

then (42) has at least one solution.

Proof. We will use the same strategy as in the proof of Lemma 7. In this case one
has that g0(t, x) = −m(t)

xλ .

Using (43) it follows that there exists z > aT
2 such that E < Mz−λ. Let us

define x1 = z − aT
2 > 0 and c ∈ C0 by c(t) = −m(t)(x1 + aT

2 )−λ. Then, it follows
that conditions (28) and (29) hold true. Hence, from Theorem 4 we infer that (42)
has a lower solution α such that x1 ≤ α < x1 + aT

2 .

Using again (43) it follows that there exists x2 > z such that E ≥ Mx−λ
2 . Let

us define d ∈ C0 by d(t) = −m(t)x−λ
2 . Then, it follows that conditions (31) and

(32) hold true. Hence, from Theorem 5 we infer that (42) has an upper solution β
such that x2 ≤ β < x2 + aT

2 .

Consequently, (42) has a lower solution α and an upper solution β such that
α ≤ β. The result follows now from Lemma 3.

In the “pure” attractive case we have the following result concerning (37).

Proposition 2. Assume that (38) and

lim
x→0

g(t, x) = +∞ uniformly with t ∈ [0, T ] (44)

hold true. Then (37) has at least one solution provided that either

r < 0

or

r = 0, E >
aT

2
R+.
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Proof. Notice that from (44) it follows that any sufficiently small positive constant
α is a lower solution for (37). The construction of an upper solution β ≥ α for (37)
is similar as in Lemma 7. The result follows now from Lemma 3.

Remark 5. Theorem 7 from [1] follows taking r = 0 in Proposition 2.

Example 6. Let us consider again problem (41), assuming that m > 0. If either
r < 0 or r = 0 and E > T

2R+, then (41) has at least one solution.

5.3. A problem in nonlinear elasticity

The radial oscillations of an elastic spherical membrane made up of a Neo-Hookean
material, subjected to an internal continuous pressure p : R → (0,∞) are governed
by the scalar equation

u′′ = p(t)u2 − u+
1
u5
. (45)

If relativistic effects are taken into account and looking for T -periodic solutions,
then the above equation becomes(

u′√
1 − u′2

)′
= p(t)u2 − u+

1
u5
, u(0) − u(T ) = 0 = u′(0) − u′(T ). (46)

If

max
[0,T ]

p <
6

77/6
, (47)

then (46) has at least two positive solutions. Indeed, using (47) it follows that
α = 71/6 is a strict lower solution of (46). On the other hand, clearly there exists
β1, β2 > 0 strict upper solution of (46) such that β1 < α < β2. Now the result
follows from Lemma 3 and Theorem 2.

Notice that in [9] it is proved, using variational arguments, that (45) has at least
two T -periodic solutions provided that (47) is satisfied.

Next, let us consider the periodic problem

(φ(u′))′ = p(t)uδ − u+
1
uµ
, u(0) − u(T ) = 0 = u′(0) − u′(T ), (48)

where p ∈ C0, δ > 0 and µ ≥ 1. Let β > 0 be a constant small enough such that β
is an upper solution of (48). Putting

g0(t, x) = p(t)xδ − x+
1
xµ

((t, x) ∈ [0, T ]× (0,∞))

and

c(t) = p+(t)
(
x1 +

aT

2

)δ

− p−(t)xδ
1 − x1 +

1
xµ

1

(t ∈ [0, T ]),
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we deduce that (28) holds true for any x1 > 0. One the other hand, in this particular
case, (29) holds true if and only if there exists x1 > 0 such that

P+

(
x1 +

aT

2

)δ

− P−xδ
1 − Tx1 +

T

xµ
1

≤ 0.

So, by virtue of Theorem 4 one has that (48) has a lower solution α. Then, using
Theorem 2 we infer that (48) has at least one solution. This is the case if either
p < 0 or δ < 1.

5.4. Rayleigh–Plesset type problems

Let λ > 0, µ ≥ 1 be such that µ > λ. Consider also e ∈ C0 with e ≤ 0. Using
Theorem 2 and Remark 2, it follows that the Rayleigh–Plesset type problem with
relativistic effects(

u′√
1 − u′2

)′
+ c

u′

u
4
5

+
1
uλ

− 1
uµ

= e(t)uλ, u(0) − u(T ) = 0 = u′(0) − u′(T )

has at least one solution for any c ∈ R.
For corresponding results in the classical case, see [10, 11].
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