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Abstract

We treat the restricted (n+ 1)-body problem with a non-Newtonian homogeneous
potential where the n primaries move on an arbitrary 2π-periodic orbit. We prove
that the satellite equation has infinitely many periodic solutions that emerge from the
infinity, asymptotically homothetic to the circular solutions of a central force prob-
lem. These solutions are obtained as critical solutions of a family of time-dependent
perturbed Lagrangian systems, bifurcating uniformly from a compact set of periodic
solutions of the unperturbed Lagrangian system.

1 Introduction

We study the planar and spatial non-Newtonian restricted (n + 1)-body problem. The
satellite moves under a non-Newtonian influence with the n primary bodies. The primaries
is assumed to move on an arbitrary 2π-periodic orbit. The objective is to find periodic
solutions to the equation

q̈ = −
n∑

j=1

mj
q − qj(t)

∥q − qj(t)∥α+1 . (1)

Here, q ∈ Rd is the position of the satellite, qj(t) ∈ Rd represents the position of the jth
primary body with mass mj, ∥ · ∥ is the Euclidean norm of Rd, and d = 2, 3. We assume
that α ≥ 1. Notice that α = 2 corresponds to the gravitational case and we will omit it. See
[2, 3, 7, 12] to find results related with the gravitational case.
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We look for solutions in which the amplitude is very large. These solutions are called
comet solutions. After rescaling, the strategy will be to write Eq. (1) as a central force
problem with a periodic and small perturbation. We want to show that this problem has
an infinite number of periodic solutions emerging uniformly from the set of circular orbits of
the central force problem for certain values of α.

This problem has been studied before in [2, 3, 7, 12, 15]. The difference between those
works and ours is that they obtain a finite number of bifurcations, and therefore a finite (but
arbitrarily large) number of periodic solutions. Thanks to the uniformity in the bifurcation,
we obtain an infinite number of periodic solutions.

The idea of uniform bifurcation has been employed previously in [19]. In this work,
the author uses a Hamiltonian approach and some sophisticated tools to obtain an infinite
number of periodic solutions in the more difficult Newtonian situation. The solutions in
[19] can have collisions. Our solutions are quasi-circular and thus avoid collisions. We use
more elementary techniques, such as a quantitative version of the implicit function theorem,
sufficient for our purposes.

In this work, we use a variational approach. We perform a sequence of time rescalings to
transform Eq. (1) in a family of perturbed Lagrangian systems with the following structure:

Lε(t, x, y) =
1

2
⟨Aε(t, x)y, y⟩+ ⟨Bε(t, x), y⟩+ Uε(t, x). (2)

For small ε, the Lagrangian function Lε can be interpreted as an autonomous part L0 =
Lε|ε=0 plus a small and periodic perturbation. In this way we obtain infinite bifurcations
from L0. In principle, the size of each of the branches could depend on the chosen rescaling
but we prove that this is not the case. In this sense our bifurcation is uniform, leading to
the existence of infinitely many periodic solutions from (1) for small ε.

Then, we look for critical points of the periodic action functional Aε associated with Lε,
given by

Aε(x) =

∫ 2π

0

Lε(t, x(t), x
′(t)) dt. (3)

The hypothesis is that the unperturbed action functional A0 has a compact manifold of
critical points. This manifold satisfies a suitable non-degeneracy condition. The idea to
obtain critical points of Aε is to reduce the problem to find critical points of a function over
a compact manifold. This idea is the theory of nondegenerate critical manifold developed in
Section 2 from [5].

Notice that the Lagrangian function given in (2) is a polynomial of degree 2 in its variable
y. This is necessary to guarantee that the action functional is sufficiently regular to apply a
quantitative version of the implicit function theorem. More precisely, if the action functional
Aε given in (3) is twice differentiable and the Lagrangian function Lε is smooth and satisfies
certain quadratic growth conditions, then the associated Lagrangian function is a polynomial
of degree at most two in its variable y. This result is proved in Proposition 3.2 from [1].

Going back to the original problem, the manifold of critical points of A0 is the set of
circular orbits of the central force problem with a fixed minimal period. We prove that in
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the planar case, this manifold has two connected components. Each one is diffeomorphic to
SO(2). In the spatial case, there is only one connected component and it is diffeomorphic
to SO(3). The Lusternik-Schnirelman category of these manifolds guarantees the minimal
number of bifurcations that we can obtain from each connected component. Notice that the
Lusternik-Schnirelman category of SO(2) and SO(3) are 2 and 4, respectively.

The manifold of circular periodic solutions satisfies the nondegenerate conditions only
for α ̸= 2. This is because in the gravitational case, the connected component of circular
solutions with a fixed minimal period also contains the elliptic solutions. This implies that
in this case, the topology of the manifold of periodic solutions is different from the other
cases. In particular, it is not a compact manifold unless collisions are regularized. This
regularization is treated in [18]. Another way to study the gravitational case is by imposing
symmetry conditions in the primaries to exclude elliptic motions, as in [3, 7, 12].

Our results extend to three dimensions those obtained in [7] for the planar case. But
even in the planar case, our result can be considered new, since it clarifies and improves
the proofs and results in [7]. First of all, we obtain four branches of bifurcation instead of
the two obtained in [7]. This is a consequence of the use of both connected components of
the manifold of critical points. Secondly, we impose the non-resonance condition p

√
3− α ̸∈

Z \ {0} that, although necessary, was not explicitly stated in [7]. Finally, we include the
analysis of the uniformity in the bifurcation branches. This was not included in [7] and so
the conclusion there should be the existence of an arbitrarily large (but finite) number of
periodic solutions.

In the central force problem, we have other manifolds of non-circular periodic solutions.
For example, in [8] the authors use a Hamiltonian approach and the Poincaré-Birkhoff the-
orem to obtain periodic solutions bifurcating from a manifold of non-circular solutions dif-
feomorphic to a two-dimensional torus. Also, the reader can find more non-circular periodic
solutions of the central force problem in Section 2.8 from [6].

The rest of the work proceeds as follows. In Sect. 2, we set Eq. (1) and we describe the
set of circular solutions with fixed minimal period of the central force problem. In Theorem
1 we establish the existence of periodic solutions of (1). As in [7], we use a rescaling and we
perform an infinite number of changes of variable to write Eq. (1) as a family of perturbed
Lagrangian systems of the form (2). In Sect. 3, we discuss in Theorem 2 the existence
of critical solutions of Lagrangian systems of the form (2). At the end of this section, we
prove Theorem 1 using Theorem 2. Finally, in Sect. 4, we use a functional framework
and a quantitative version of the implicit function theorem to prove Theorem 2, using a
quantitative result of existence of critical points inspired from Theorem 2.1 from [5].

I thank my Ph.D. supervisor Rafael Ortega. His help and suggestions made this work
possible. I would also like to thank my Ph.D. supervisor Carlos Garćıa-Azpeitia, Lei Zhao,
and Antonio Ureña for their comments and corrections. I want to thank the financial support
from Asociación Universitaria Iberoamericana de Postgrado (AUIP), Dirección General de
Asuntos de Personal Académico with the PAPIIT project IA100423 and Consejo Nacional
de Ciencia y Tecnoloǵıa with the program 782093.
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2 Time-dependent Restricted (n + 1)-body Problem

Let qj(t) ∈ Rd (d = 2, 3) be the position of n bodies with masses mj, called primary
bodies, j = 1, . . . , n. We assume that qj(t) is an arbitrary 2π-periodic function of class C3

for each j satisfying qi(t) ̸= qj(t) for t ∈ R when i ̸= j. We assume that the center of mass
is at the origin,

n∑
j=1

mjqj(t) = 0, (4)

and

M =
n∑

j=1

mj = 1.

The position for a satellite with infinitesimal mass q(t) ∈ Rd which is influenced by the
motion of the primaries under a non-Newtonian homogeneous potential satisfies the equation

q̈ = −
n∑

j=1

mj
q − qj(t)

∥q − qj(t)∥α+1 , (5)

where α ∈ [1,∞[.

The objective is to find an infinite number of sub-harmonic solutions of (5) in which
the satellite is far away from the primaries. These solutions are emerging from the infinity,
asymptotically homothetic to the circular solutions of the central force problem, namely

q̈ = − q

∥q∥α+1
, q ∈ Rd \ {0}. (6)

In fact, if α ∈ [1,∞[ Eq. (6) has a compact set of periodic solutions with fixed period formed
by the circular solutions and they can be given explicitly. Given any p ∈ Z+, we can consider
a circular solutions with minimal period 2π/p such as

γ̃(t; p) = p−2/(α+1)

(
cos(pt)
sin(pt)

)
. (7)

Actually, if α ≥ 3 these circular solutions are the unique periodic solutions with minimal
period 2π/p of Eq. (6) (see Section 2.b from [4]).

Using (7), we can write every circular solution with minimal period 2π/p of (6) such as

γ(t; p) = Rγ̃(t; p), (8)

where R ∈ SO(d). In the case d = 3, γ̃ is assumed to lie in the plane x3 = 0 of R3. Our
main theorem is

Theorem 1. Let p ∈ Z+, α ∈ [1,∞[, d = 2, 3 and assume that p
√
3− α ̸∈ Z \ {0}. Then,

there is an integer q0 that only depends on p such that for each integer q > q0 co-prime with
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p, the restricted (n+ 1)-body problem (5) has at least four different 2πq-periodic solution of
the form

Ql(t) = q2/(α+1)γlq(t/q; p) +Rp,q(t), l = 1, 2, 3, 4 ,

where γlq has the form given in (8), Rp,q are 2πq-periodic functions and there is a constant
cp that only depends on p such that

∥Rp,q(t)∥ ≤ cpq
−2/(α+1), t ∈ R.

Since q0 only depends on p, we can use Theorem 1 to obtain an infinite number of periodic
orbits of Eq. (5). This is an improvement with respect of the classical results from [2, 3]
where the authors obtain a finite (but arbitrary large) number of periodic orbits.

Notice that γ̃l(t/q, p) has a minimal period 2πq/p. In particular, it is a sub-harmonic
function of order q with respect to the period 2π. This means that it is of period 2πq but
it is not of period 2πr for any integer r, 1 ≤ r < q. Given a function with this property,
there is a neighborhood in the C0 topology such that every 2πq-periodic function in this
neighborhood is also a sub-harmonic function of order q with respect to the period 2π and
this neighborhood does not depends on q. Applying R−1 to Ql, we have

R−1Ql(t) = q2/(α+1)γ̃lq(t/q; p) +R−1Rp,q(t),

and since the matrix R represents a rigid rotation, the term R−1Rp,q has a small amplitude.
Therefore, we can ensure that the solution Ql is a sub-harmonic solution of order q with
respect to the period 2π for q large enough.

The parameters p and q are linked with the number of revolutions around the origin of
the solutions. Since the solutions Ql do not pass through the origin, we can write them in
polar coordinates,

Ql(t) = |Ql(t)|
(
cos θl(t)
sin θl(t)

)
,

where the function θl is called argument function and has the same regularity as Ql. Using
the argument function, we can define the number of revolutions of the solution Ql in a period
as the integer number Nl given by

Nl =
θl(2πq)− θl(0)

2π
.

The number Nl only depends on the homotopy class of the loop Ql in R2 \ {0}. By
a direct computation, we can prove that the number of revolutions in a 2πq-period for
q2/(α+1)γl(t/q, p) is p. We can construct a continuous homotopy Hl : R/2πqZ × [0, 1] → R2

given by

Hl(t, λ) = (1− λ)q2/(α+1)γlq(t/q, p) + λQl(t) = q2/(α+1)
[
γlq(t/q, p) + λRp,q(t)

]
.

Since the amplitude of the periodic remainder Rp,q is small, this homotopy does not pass
through the origin. By the continuity of the number of revolutions, Nl must remain constant
along the homotopy in each connected component. Thus, the number of revolutions of the
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solutions Ql is also p. Therefore, we are finding solutions where the number of revolutions
of the comet in a period 2πq is a fixed number p meanwhile the primaries close their orbits
q times.

By direct computations, we can also obtain an estimate of the kinetic energy of the
remainder Rp,q. That is, ∥∥∥∥ 1

2πq
Ṙp,q

∥∥∥∥2

L2

≤ c̃pq
−α+5

α+1 ,

where c̃p is a constant that only depend on p. Here, L2 = L2(R/2πqZ,Rd) denotes the space

of square-integrable periodic paths in Rd with norm ∥f∥L2 = (
∫ 2πq

0
|f(t)|2 dt)1/2.

The set of circular periodic solutions of Eq. (6) with fixed minimal period is a manifold
with two connected components diffeomorphic to SO(2) if d = 2 and a connected manifold
diffeomorphic to SO(3) if d = 3. As we will see later, the number of solutions found is related
with a topological property of these manifolds, called the Lusternik-Schnirelman category.

The idea behind the proof of Theorem 1 is to use simultaneously an infinite number of
changes of variable. Let q ∈ Z+ and ε > 0 be positive parameters. Let us consider the
change of variables

q(t) = ε−1x (t/q) , (9)

and we assume that q and ε are related by

1

q2
= εα+1, (10)

We will treat ε as a continuous parameter, although the relation (10) restricts the values
that ε can take.

If we define a rescaled time variable τ = t/q we can transform Eq. (5) in any of the
following family of differential equations

x′′ = −
n∑

j=1

mj
x− εxj(τ ; q)

∥x− εxj(τ ; q)∥α+1 , (11)

where the non-autonomous terms are given by

xj(τ ; q) = qj(qτ), j = 1, . . . , n. (12)

and ′ denotes the derivative with respect to the variable τ . By a direct computation, we can
prove the following

Lemma 1. If x(τ) is a 2π-periodic solution of (11) and the relation (10) is satisfied, then
q(t) given by (9) is a 2qπ-periodic solution of (5).

The proof of Theorem 1 will consist in proving that Eq. (11) admits 2π-periodic solutions
if ε is small enough independently of q. In this way, for large q it is possible to adjust ε in
(10). For this reason we must be careful about the uniformity with respect to the parameter
q.
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It is easy to see that the family of differential equations (11) is the Euler-Lagrange
equation associated with the family of Lagrangian functions

Lε(τ, x, y; q) =
1

2
∥y∥2 +

n∑
j=1

mjϕα(∥x− εxj(τ ; q)∥). (13)

where,

ϕα(λ) =

{
1

α−1
λ1−α if α > 1

− log λ if α = 1
. (14)

The autonomous part L0 is the Lagrangian function associated with the central force prob-
lem,

L0(x, y) =
1

2
∥y∥2 + ϕα(∥x∥), (15)

We can see that the autonomous part L0 is a polynomial of degree 2 in its its variable y.
The method used to prove Theorem 1 can be extended to other systems of this type because
the theory only depends on this fact. In the next section we will work with Lagrangian
systems with this structure, motivated by this discussion.

3 Admissible Families of Lagrangian Functions

Let ε0 > 0 be a positive number and let U ⊂ Rd be an open set. We consider a Lagrangian
function L : DU × [0, ε0[ → R, L = Lε(τ, x, y) defined on DU = (R/2πZ)× U × Rd with the
following form:

Lε(τ, x, y) =
1

2
⟨Aε(τ, x)y, y⟩+ ⟨Bε(τ, x), y⟩+ Uε(τ, x). (16)

Here, ⟨·, ·⟩ is the Euclidean inner product of Rd. We assume that the functions A : (R/2πZ)×
U × [0, ε0[ → Rd×d, B : (R/2πZ)×U × [0, ε0[ → Rd and U : (R/2πZ)×U × [0, ε0[ → R are in
the class C3,2([(R/2πZ)× U ]× [0, ε0[). Here, Rd×d denotes the set of matrices of dimension
d× d. Let us recall that a function f : A× B → R, f = f(a, b), is in the class Cp,q(A× B)
if f(·, b) ∈ Cp(A) for any b ∈ B, f(a, ·) ∈ Cq(B) for any a ∈ A and the maps

(a, b) → ∂α
a ∂

β
b f(a, b)

are continuous for |α| ≤ p and |β| ≤ q.

Moreover, we assume that A0, B0, and U0 do not depend on τ and A0, B0, U0 ∈ C4(U).
Also, we assume that Aε(τ, x) is symmetric for every (τ, x; ε) ∈ (R/2πZ)×U × [0, ε0[. Under
these considerations, the Lagrangian function (16) is in the class C3,2(DU × [0, ε0[). In
addition, we suppose that there is ϵ > 0 such that

⟨Aε(τ, x)y, y⟩ ≥ ϵ∥y∥2; (τ, x, y; ε) ∈ DU × [0, ε0[. (17)
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In this section we show the existence of 2π-periodic solutions of the Euler-Lagrange
equation associated to a given Lagrangian function L, that is, functions xε ∈ C2 that satisfy

d

dτ
[∂yLε(τ, xε(τ), x

′
ε(τ))] = ∂xLε(τ, xε(τ), x

′
ε(τ)),

xε(0) = xε(2π), x′
ε(0) = x′

ε(2π).
(18)

The solutions will emerge from a set of periodic solutions of the autonomous Lagrangian
system associated with L0. This set of periodic solutions is denoted by Γ. By direct compu-
tation, we can prove that the variational equation of (18) when ε = 0 around any solution
γ ∈ Γ becomes

∂2
yyL0 (γ(τ), γ

′(τ))u′′ +
[
∂3
xyyL0 (γ(τ), γ

′(τ)) [γ′(τ)] + ∂3
yyyL0 (γ(τ), γ

′(τ)) [γ′′(τ)]
]
u′

+
[
∂3
xxyL0 (γ(τ), γ

′(τ)) [γ′(τ)] + ∂3
xyyL0 (γ(τ), γ

′(τ)) [γ′′(τ)]− ∂2
xxL0 (γ, γ

′)
]
u = 0.

(19)

We consider only certain sets of periodic solutions of the autonomous Lagrangian system
associated with L0. These sets must satisfy a suitable non-degeneracy condition.

Definition 1. We say that Γ ⊂ C2(R/2πZ, U) is a regular manifold of periodic solutions for
the autonomous Lagrangian system associated with L0 = L0(x, y) if it satisfies the following
properties:

(i) Every function γ ∈ Γ satisfies

d

dτ
[∂yL0(γ(τ), γ

′(τ))] = ∂xL0(γ(τ), γ
′(τ)).

(ii) The family Γ is invariant under time translations; that is,

γ ∈ Γ ⇒ Thγ ∈ Γ,

where Thγ(τ) = γ(τ + h).

(iii) The set of initial conditions at t = 0, denoted by

MΓ =
{
(γ(0), γ′(0)) ∈ U × Rd : γ ∈ Γ

}
, (20)

is a compact submanifold inside the phase space.

(iv) The dimension of the set of 2π-periodic solutions of the linear equation (19) is the
dimension of MΓ as a manifold.

Notice that condition (17) implies that det[∂2
yyL0(γ(τ), γ

′(τ))] > 0 for every τ ∈ R/2πZ.
Then, we can write Eq. (19) in its normal form. This allows us to apply Floquet theory.

Moreover, we also consider only families of Lagrangian functions of the form (16) with
the following properties

Definition 2. We say that a function L : DU × [0, ε0[→ R is an admissible family of
Lagrangian functions with respect to the regular manifold Γ if
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(i) We can write L in the form given by Eq. (16) and the functions A = Aε(τ, x), B =
Bε(τ, x) and U = Uε(τ, x) are in the class of class C3,2([(R/2πZ)×U ]× [0, ε0[); Aε(τ, x)
satisfies (17) form some ϵ > 0; A0, B0, and U0 do not depend on τ and A0, B0,U0 ∈
C4(U).

(ii) The Lagrangian function L0 is autonomous and

∂Lε

∂ε
(τ, x, y)

∣∣∣∣
ε=0

= 0.

for every (τ, x, y) ∈ DU .

Using Point (ii) of the previous definition, we can write an admissible family of La-
grangian functions as

Lε(τ, x, y) = L0(x, y) +Rε(τ, x, y),

where

L0(x, y) =
1

2
⟨A0(τ, x)y, y⟩+ ⟨B0(x), y⟩+ U0(x).

and ∂εRε(τ, x) = 0 when ε = 0. Therefore, for small ε, the Lagrangian function Lε can be
interpreted as follows: an autonomous part L0 plus a small and periodic perturbation Rε.

In the following theorem, cat(Γ) denotes the Lusternik-Schnirelman category of Γ, that
is, the smallest number of sets in Γ, open and contractible, needed to cover Γ.

Theorem 2. Let ε0 > 0, let U ⊂ Rd be an open set and let L : DU × [0, ε0[ → R be an
admissible family of Lagrangian functions with respect to the manifold Γ. We suppose that
the matrix function A satisfies assumption (17) and there is a constant C > 0 such that

∥A(·)(τ, ·)∥C3,2(U×[0,ε0[) ≤ C,

∥B(·)(τ, ·)∥C3,2(U×[0,ε0[) ≤ C,

∥U(·)(τ, ·)∥C3,2(U×[0,ε0[) ≤ C,

(21)

for every τ ∈ R/2πZ. Then, there are constants ε1 ∈ ]0, ε0[ and c > 0 that only depend
on ε0, U , Γ, C and ϵ such that for every ε ∈ [0, ε1[, we have, at least, n = cat(Γ) different
periodic orbits xl(·; ε) (l = 1, . . . , n) of the Lagrangian system (18) associated to Lε and

distH(xl,Γ) ≤ cε2, (22)

in which distH(x,D) denotes the distance between a function x ∈ H and a closed set D ⊂ H,
where H = H1(R/2πZ,Rd) is the Sobolev space of 2π-periodic paths on Rd with one weak
derivative in L2(R/2πZ,Rd) with norm

∥x∥H =

(∫ 2π

0

[
∥x(τ)∥2 + ∥x′(τ)∥2

]
dτ

)1/2

.

The proof of Theorem 2 is postponed to Section 4.
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3.1 Proof of Theorem 1

To apply Theorem 2, we need to prove that the Lagrangian function given in (13) is an ad-
missible family of Lagrangian functions according to Definition 2. Let Γd,p ⊂ C2(R/2πZ,Rd)
be the set of circular 2π/p-periodic solutions of (6) with minimal period 2π/p (d = 2, 3).

Lemma 2. For any p ∈ Z+, the set Γd,p is a regular manifold of periodic solutions for
the autonomous Lagrangian system associated with the Lagrangian function L0 given in Eq.
(15). If d = 2, it has two connected components and each component is diffeomorphic to
SO(2). If d = 3, it is diffeomorphic to SO(3).

Proof. We need to prove Points (i)-(iv) from Definition 1. Point (i) is true by definition.
Point (ii) is true since L0 is autonomous. We only need to prove Point (iii) and Point (iv).
Using (7) and (8), we can prove that the amplitude Ap and the norm of velocity Bp of every
solution in Γd,p are

Ap = p−2/(α+1); Bp = p(α−1)/(α+1).

For d = 2, let Γ+
2,p and Γ−

2,p be the sets of solutions of Eq. (6) with positive and negative
orientation, respectively. Then, Γ2,p = Γ+

2,p ∪ Γ−
2,p. In this case, the set of initial conditions

at t = 0 is given by

MΓ+
2,p

= {(x, y) ∈ R2 × R2 : ⟨x, x⟩ = A2
p, ⟨y, y⟩ = B2

p, ⟨x, y⟩ = 0, det(x|y) > 0}.

We can construct an explicit diffeomorphism between SO(2) and MΓ+
2,p
, namely(

cos θ − sin θ
sin θ cos θ

)
7→ (x, y); x = Ap

(
cos θ
sin θ

)
, y = Bp

(
− sin θ
cos θ

)
.

Analogously, we can construct a diffeomorphism between MΓ−
2,p

and SO(2), and Point (iii)

is followed in this case.

For d = 3, the set of initial conditions at t = 0 is given by

MΓ3,p = {(x, y) ∈ R3 × R3 : ⟨x, x⟩ = A2
p, ⟨x, y⟩ = 0, ⟨y, y⟩ = B2

p}.

After rescaling, we can identify the set MΓ3,p with the unit tangent bundle of S2, namely,

T1S
2 = {(x, y) ∈ R3 × R3 : ⟨x, x⟩ = 1, ⟨x, y⟩ = 0, ⟨y, y⟩ = 1}.

Moreover, it is possible to construct an explicit diffeomorphism between T1S
2 and SO(3)

(see Section 1.4 of [11]). Therefore, there exists a diffeomorphism between MΓ3,p and SO(3)
and Point (iii) is followed in this case.

Finally, to prove Point (iv), we need to compute the dimension of the set of 2π-periodic
solutions of Eq. (19). By direct computation and using that ∥γ(τ)∥ = Ap and

∑n
j=1 mj = 1,

we can prove that the variational equation (19) around any γ ∈ Γd,p becomes

u′′ + p2
[
I − A−2

p (α + 1)γ(τ)γ(τ)T
]
u = 0, u ∈ Rd. (23)

Eq. (23) is a linear equation with periodic coefficients. So, the existence of 2π-periodic
solutions of Eq. (23) is related to its Floquet exponents. We consider the case d = 2 and
d = 3 separately.
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• d = 2. Using the diffeomorphism between each connected component of Γ2,p and SO(2)
described in Lemma 2, given any γ ∈ Γ±

2,p, we can find R ∈ SO(2) such that

γ(τ) = ApR

(
cos(pτ)
± sin(pτ)

)
.

Now, we can make the following change of variables

u = e∓Jpτv, J =

(
0 −1
1 0

)
.

Since e∓Jpτ and R conmute,

e∓Jpτγ(τ) = ApRe1, e1 =

(
1
0

)
.

Then,

e∓Jpτγ(τ)γ(τ)T e±Jpτ = A2
pR

(
1 0
0 0

)
RT .

So, the equation for v becomes a system with constant coefficients, namely

v′′ ∓ 2pJv′ − p2(α + 1)R

(
1 0
0 0

)
RTv = 0.

The new change w = RTv leads to

w′′ ∓ 2pJw′ − p2(α + 1)

(
1 0
0 0

)
w = 0. (24)

Since the changes of variables used are 2π-periodic, Floquet exponents of Eq. (23)
(when d = 2) and Eq. (24) are the same. Thus, we can compute these exponents
directly from Eq. (24), obtaining

λ1,2 = 0, λ3,4 = ±p
√
α− 3.

If α > 3 the solutions associated with λ3,4 are not periodic and the eigenvalue λ = 0
has a geometric multiplicity equal to 1. If 1 ≤ α < 3 and p

√
3− α ̸∈ Z, the solutions

associated with λ3,4 do not have the appropriate period. If α = 3, the eigenvalue
λ = 0 has algebraic multiplicity 4, but its geometric multiplicity is 1. Therefore, if
p
√
3− α ̸∈ Z \ {0}, the dimension of the set of 2π-periodic functions is exactly 1.

• d = 3. Using the diffeomorphism between Γ3,p and SO(3) described in Lemma 2, given
any γ ∈ Γ3,p, we can find R ∈ SO(3) such that

γ(τ) = ApR

cos(pτ)
sin(pτ)

0

 .
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Making the change of variables u = Rz, and letting z = (z1, z2, z3)
T , Eq. (23) can be

decomposed in two parts, namely(
z′′1
z′′2

)
+ p2

[
I − (α + 1)

(
cos2(pτ) sin(pτ) cos(pτ)

sin(pτ) cos(pτ) sin2(pτ)

)](
z1
z2

)
= 0,

z′′3 + p2z3 = 0.

(25)

We have two linearly independent 2π-periodic solutions of Eq. (25), namely

z(1)(τ) =

 0
0

cos(pτ)

 , z(2)(τ) =

 0
0

sin(pτ)

 .

The first equation of (25) has the same form as in the case d = 2 with R = I. Thus,
we can compute Floquet exponents of the previous equation in the same way as in the
case d = 2, obtaining

λ = 0 (double), λ = ±p
√
α− 3.

If α > 3, the solutions associated with λ = ±p
√
α− 3 are not periodic. Moreover, the

eigenvalue λ = 0 has a geometric multiplicity equal to 1. If 1 ≤ α < 3 and p
√
3− α ̸∈ Z

the solutions associated with λ = ±ip
√
3− α do not have the appropriate period.

Finally, if α = 3, λ = 0 becomes an eigenvalue with algebraic multiplicity equal to
4, but its geometric multiplicity is still 1. In any case, we only have one 2π-periodic
solution of (25) with z3 = 0. This solution is linearly independent to z(1) and z(2). So,
if p

√
3− α ̸∈ Z \ {0} the dimension of the set of 2π-periodic solutions of (23) when

d = 3 is exactly 3.

In both cases, the dimensions of the set of 2π-periodic solutions of Eq. (23) are the dimensions
of MΓ2,p as a manifold when d = 2 and MΓ3,p as a manifold when d = 3.

Lemma 3. Let p ∈ Z+, α ≥ 1 and assume that p
√
3− α ̸∈ Z \ {0}. Then, the Lagrangian

function given in Eq. (13) is an admissible family of Lagrangian functions with respect to
the manifold Γd,p.

Proof. First, we need to define the domain U and the constant ε0 so that the Lagrangian
function given in (13) is well-defined. Using (12), we have that ∥xj(τ ; q)∥ ≤ ∥qj∥∞ for all
τ ∈ R/2πZ. Since qj ∈ C3(R/2πZ) for each j, there is a constant c1 > 0 (that does not
depend on q) such that ∥qj∥∞ < c1 for all j = 1, . . . , n. Let ε0 > 0 be a number that satisfies
ε0c1 < Ap and let ρ > 0 be any number in ]0, Ap− ε0c1[. We can define the open set U ⊂ Rn

such as
U =

{
x ∈ Rd : Ap − ρ < ∥x∥ < Ap + ρ

}
.

Thus, if we take (τ, x; ε) ∈ (R/2πZ)× U × [0, ε0[ we have

∥x− εxj(τ, q)∥ ≥ ∥x∥ − ε∥qj∥∞ > Ap − ρ− εc1 > 0. (26)

12



Therefore, the Lagrangian function L = Lε(τ, x, y) given in Eq. (13) is well-defined on
DU × [0, ε0[.

The next step is to prove Points (i) and (ii) from Definition 2. If we set

Aε(τ, x) = I,

Bε(τ, x) = 0,

Uε(τ, x) =
n∑

j=1

mjϕα(∥x− εxj(τ ; q)∥),
(27)

in Eq. (16), we obtain the Lagrangian function (13). Also, it is clear that A, B, and U are
in the class C3,2([(R/2πZ) × U ] × [0, ε0[) and satisfy the other conditions. Thus Point (i)
follows.

The function L becomes the autonomous Lagrangian function L0 given in (15) when
ε = 0. To prove Point (ii), we only need to verify that ∂εLε(τ, x; q) = 0 when ε = 0. By
direct computation,

∂Lε

∂ε
(τ, x; q)

∣∣∣∣
ε=0

= −ϕ′
α (∥x∥)
∥x∥

〈
x,

n∑
j=1

mjxj(τ ; q)

〉
.

On the other hand, using Eq. (4),

n∑
j=1

mjxj(τ ; q) =
n∑

j=1

mjqj(qτ) = 0,

and Point (ii) follows.

Lemma 4. cat(Γ±
2,p) = 2 and cat(Γ3,p) = 4.

Proof. In Lemma 2, we prove that Γ±
2,p is diffeomorphic to SO(2) and Γ3,p is diffeomorphic

to SO(3). Then, it is enough to compute cat(SO(d)) for d = 2, 3.

There is a diffeomorphism between SO(2) and S1. It is possible to cover S1 with two
open and contractible sets. Thus, cat(S1) ≤ 2. Since S1 is not contractible, cat(SO(2))
= cat(S1) = 2. On the other hand, in Corollary 4.2 from [13], the authors prove that
cat(M) = 4 if M is a closed 3-manifold and its fundamental group is not free. According to
Section 10 from Chapter III from [9], the fundamental group of SO(3) is Z2, which is not
free. Thus, cat(Γ3,p) = 4.

Proof of Theorem 1. Let α ≥ 1, d = 2, 3 and p ∈ Z+ such that p
√
3− α ̸∈ Z\{0}. By Lemma

2, the set Γd,p is a regular manifold for the autonomous Lagrangian system associated with
the Lagrangian function L0 given in (15). Now let ε0 > 0, c1 > 0, ρ > 0, and U ⊂ Rd

be as in the proof of Lemma 3. Both ε0, c1, ρ, and U only depend on p. By Lemma 3,
the Lagrangian function (16) (with A, B, and U given in (27)) is an admissible family of
Lagrangian functions with respect to the manifold Γd,p. Also, the matrix function A satisfies
assumption (17) with ϵ = 1.

13



We only need to verify (21). Since A and B are constant functions, the constants C1 = 1
and C2 = 0 are bounds for A(·)(τ, ·) and B(·)(τ, ·) in C3,2(U × [0, ε0[), respectively, for any
τ ∈ R/2πZ. Also, by direct computation, we can prove that there are positive constants δ1
and δ2 that only depend on p such that

0 < δ1 ≤ ∥x− εxj(τ ; q)∥ ≤ δ2, (τ, x; ε) ∈ (R/2πZ)× U × [0, ε0[, (28)

(see Eq. (26)). Since U and its derivatives only depend on powers of products of [x−εxj(τ ; q)]
and xj(τ ; q), it is possible to find a constant C3 > 0 that only depends on δ1 and δ2 (and
therefore on p) such that

∥U(·)(τ, ·)∥C3,2(U ;[0,ε0[) ≤ C3, τ ∈ (R/2πZ)× [0, ε0[.

Letting C = max{1, C3} we verify (21). By construction, the constant C only depends on
p. Moreover, from Lemma 4, cat(Γ3,p) = 4.

Therefore, applying Theorem 2 in the case d = 3 and using Lemma 4, there are constants
ε1 ∈ [0, ε0[ and c̃p > 0 that only depend on p (because ε0, U , Γ3,p, and C depend only on p)
such that, for any ε ∈ ]0, ε1[ we have at least four different periodic orbit xl (l = 1, 2, 3, 4) of
(11) that satisfies (22). In particular, since Γ3,p is a compact set on H, there is a function
γ̃l ∈ Γ3,p, γ̃l = γ̃l(τ ; p, ε) such that

distH(xl,Γ) = ∥xl(·; p, ε)− γ̃l(·; p, ε)∥H ≤ c̃pε
2.

Letting yl = xl − γ̃l we have that

xl(τ ; p, ε) = γ̃l(τ ; p, ε) + yl(τ ; p, ε),

where
∥yl(·; p, ε)∥H ≤ c̃pε

2. (29)

Since ε1 does not depends on q, there is an integer q0 ∈ Z+ such that 1/q2/(α+1) < ε1 if
q < q0. Therefore, by Lemma 1 for ε = 1/q2/(α+1), the non-Newtonian restricted (n+1)-body
problem has at least four different comet solutions of the form

Ql(t) =
(
1/q2/(α+1)

)−1
xl

(
t/q; p, 1/q2/(α+1)

)
= q2/(α+1)

[
γ̃l
(
t/q; p, 1/q2/(α+1)

)
+ yl

(
t/q; p, 1/q2/(α+1)

)]
= q2/(α+1)γlq(t/q; p) +Rp,q(t),

(30)

where γlq(t; p) = γ̃l
(
t; p, 1/q2/(α+1)

)
and the remainder Rp,q is a 2πq periodic function given

by
Rp,q(t) = q2/(α+1)yl

(
t/q; p, 1/q2/(α+1)

)
.

Using the estimate given in Eq. (29) and the embedding ∥ · ∥L∞(R/2πZ) ≤ k∥ · ∥H (see
Proposition 1.3 from [16]) we have

∥Rp,q(t)∥ ≤ q2/(α+1)∥yl(·; p; 1/q2/(α+1))∥L∞(R/2πZ) ≤ cpq
−2/(α+1)

where cp = kc̃p only depends on p.

In the case d = 2, the set of 2π-periodic solutions has two components. So, we can apply
the previous argument in each component. Since cat (Γ±

2,p) = cat(SO(2)) = 2, we obtain
two solutions from each component. That is, we already have four periodic orbits.
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4 Action Functional

In this section, we will use a functional framework and a quantitative version of the
implicit function theorem to prove Theorem 2. Let H = H1(R/2πZ,Rd) be the Sobolev
space of 2π-periodic paths on Rd with one weak derivative in L2(R/2πZ,Rd) and inner
product

⟨x, y⟩H =

∫ 2π

0

[⟨x(τ), y(τ)⟩+ ⟨x′(τ), y′(τ)⟩] dτ. (31)

Here, the product ⟨·, ·⟩ is the Euclidean inner product of Rd and x′ denotes the (weak)
derivative of x ∈ H.

Given a Lagrangian function L = Lε(τ, x, y) of the form (16), its associated action func-
tional A = Aε(x) is given by

Aε(x) =

∫ 2π

0

Lε(τ, x(τ), x
′(τ)) dτ. (32)

For A to be well defined, we need L to be defined on (R/2πZ)× Rd × Rd. Since we are
studying families of the form given in (16), it will be enough to modify the functions A, B,
and U .

Lemma 5. Let L = Lε(τ, x, y) be a Lagrangian function such as in (16) defined on (R/2πZ)×
U × Rd × [0, ε0[ and let Λ ⊂ U be a compact set. Then, for any neighborhood V of Λ
with compact closure such that V̄ ⊂ U , there are functions Ã : (R/2πZ) × Rd × [0, ε0[ →
Rd×d, B̃ : (R/2πZ) × Rd × [0, ε0[ → Rd and Ũ : (R/2πZ) × Rd × [0, ε0[ → R in the class
C3,2(((R/2πZ) × Rd) × [0, ε0[) such that A = Ã, B = B̃ and U = Ũ when (τ, x; ε) ∈
(R/2πZ)× V × [0, ε0[; Ã0, B̃0, and Ũ0 do not depend on τ and they are in the class C4(Rd);
and Ãε(τ, x) is a symmetric matrix that satisfies (17). Moreover, there are constants K > 0
(that only depends on ε0, U , and V ) and ϵ̃ > 0 (that only depends on ϵ given in (17)) such
that

∥Ã(·)(τ, ·)∥C3,2(Rd×[0,ε0[) ≤ K
[
∥A(·)(τ, ·)∥C3,2(U×[0,ε0[) + 1

]
,

∥B̃(·)(τ, ·)∥C3,2(Rd×[0,ε0[) ≤ K∥B(·)(τ, ·)∥C3,2(U×[0,ε0[),

∥Ũ(·)(τ, ·)∥C3,2(Rd×[0,ε0[) ≤ K∥U(·)(τ, ·)∥C3,2(U×[0,ε0[),

(33)

for any τ ∈ R/2πZ, and

⟨Ãε(τ, x)y, y⟩ ≥ ϵ̃∥y∥2; (τ, x, y; ε) ∈ (R/2πZ)× Rd × Rd × [0, ε0[.

Proof. Let V be an open neighborhood of Λ with compact closure such that V̄ ⊂ U . It is
well known that there is a function φ : Rd → R in the class C∞(Rd) with compact support
such that

φ(x) =

{
1 if x ∈ V
0 if x ̸∈ U

The existence of the function φ is related to the existence of a partition of the unity sub-
ordinate to the cover {W,Rd \ W}, where W is any open set that satisfies V̄ ⊂ W ⊂ U
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(see Section 2.2 from [14] for details). Note that φ does not depends on ε. We can ex-
tend the function A to zero outside of (R/2πZ)× U × [0, ε0[ and define the matrix function
Ã : (R/2πZ)× Rd × [0, ε0[ → Rd×d given by

Ãε(τ, x) = φ(x)Aε(τ, x) + (1− φ(x))I.

With this, it is clear that Ã = A when (τ, x; ε) ∈ (R/2πZ)×V × [0, ε0[, Ã0 does not depends
on τ and Ã0 ∈ C4(Rd). Since Aε(τ, x) is symmetric and positive definite and Ãε(τ, x) is a
convex combination of Aε(τ, x) and I, Ã is symmetric and there is a ϵ̃ > 0 such that

⟨Ãε(τ, x)y, y⟩ ≥ ϵ̃∥y∥2, (τ, x, y; ε) ∈ (R/2πZ)× Rd × Rd × [0, ε0[.

On the other hand, we can define the function B̃ : (R/2πZ)× Rd × [0, ε0[ → Rd given by

B̃ε(τ, x) =

{
φ(x)Bε(τ, x) if x ∈ U,

0 if x ̸∈ U.

and define Ũ : (R/2πZ)×Rd× [0, ε0[ → R using U in the same way. By construction, B = B̃
and U = Ũ when (τ, x; ε) ∈ (R/2πZ)× V × Rd × [0, ε0[, B̃0 and U0 do not depend on τ and
B̃0, Ũ0 ∈ C4(Rd).

The functions Ã, B̃ and Ũ are constant when x ̸∈ U . Then, the derivatives of Ã, B̃, and
Ũ are bounded by the derivatives of A, B, U , and φ. Moreover, φ has a compact support.
Then, it is bounded in C3(Rd) by a constant that only depends on U , V , and the choice of
φ. Therefore, there is a constant K > 0 (related with ∥φ∥C3(Rd)) such that the estimates in
(33) are valid.

From here, we assume without loss of generality that the functions A, B and U are defined
on (R/2πZ)×Rd× [0, ε0[ and the bounds given in (21) are valid when U = Rd. This implies
that the family of Lagrangian function L given in (16) is defined on (R/2πZ)×Rd×Rd×[0, ε0[.

Remark 1. Assumption (17) is only needed to extend the matrix function A. Then, it can
be replaced by the more general condition: the function A admits a smooth and symmetric
extension Ã : (R/2πZ) × Rd × [0, ε0[ → Rd×d, Ã = Ãε(τ, x), such that A = Ã when x ∈ U
and there is a constant ϵ such that ∣∣∣det Ãε(τ, x)

∣∣∣ ≥ ϵ > 0,

for any (τ, x; ε) ∈ (R/2πZ)× Rd × [0, ε0[.

4.1 Regularity

We are going to prove that the action functional and its critical points have the necessary
regularity to apply a quantitative version of Theorem 2.1 from [5] for action functionals of
the form given in (32). In the following proposition, the set Ln = L(H×· · ·×H,R) denotes
the space of bounded multilinear forms with norm

∥M∥Ln = sup
∥vi∥H≤1
i=1,...,n

∣∣M [v1, . . . , vn]
∣∣.

For the sake of simplicity, we omit the dependence on ε.

16



Proposition 1. Let A : (R/2πZ)×Rd → Rd×d, B : (R/2πZ)×Rd → Rd and U : (R/2πZ)×
Rd → R be functions such that A, B and U are in the class C0,3((R/2πZ) × Rd) and they
satisfy (33). Let L : (R/2πZ)×Rd×Rd → R be the Lagrangian function given in (16). Then,
the action functional A : H → R associated with L given by (32) is three times continuously
differentiable.

Proof. By the regularity of the functions A, B, and U , the Lagrangian function L given in
(16) satisfies the hypothesis of Proposition 3.1 from [1]. Also, it is a polynomial of degree 2
in its variable y. Therefore, the action functional A is in the class C2(H).

The second-order derivatives of L, ∂2
xxL, ∂

2
xyL, and ∂2

yyL will be interpreted as maps from
(R/2πZ) × Rd × Rd to Rd×d. The variations in the direction of z ∈ Rd will be matrices
denoted by

∂3
xxxL(τ, x, y)[z], ∂3

xxyL(τ, x, y)[z], ∂3
xyyL(τ, x, y)[z]. ∂3

yyyL(τ, x, y)[z]

Now, by standard computations, we can prove that δ2A has, for every u ∈ H, a directional
derivative δ3A(u) ∈ L3 given by

δ3A(u)[v1, v2, v3] =

∫ 2π

0

[〈
∂3
xxxL[v3(τ)]v1(τ), v2(τ)

〉
+
〈
∂3
xxyL[v

′
3(τ)]v1(τ), v2(τ)

〉
+
〈
∂3
xxyL[v3(τ)]v

′
1(τ), v2(τ)

〉
+
〈
∂3
xxyL[v3(τ)]v1(τ), v

′
2(τ)

〉
+
〈
∂3
xyyL[v

′
3(τ)]v

′
1(τ), v2(τ)

〉
+
〈
∂3
xyyL[v

′
3(τ)]v1(τ), v

′
2(τ)

〉
+
〈
∂3
xyyL[v

′
3(τ)]v1(τ), v

′
2(τ)

〉]
dτ.

In the previous formula, the derivatives of L are evaluated in (τ, u(τ), u′(τ)). Notice that we
do not have the term ∂3

yyyL because L is a polynomial of degree 2 in its third variable.

The last step is to prove that the map

δ3A : H → L3, u → δ3A(u),

is continuous. Let {un} ⊂ H be a sequence such that un → u in H. Given v1, v2, v3 ∈ H
such that ∥vi∥H ≤ 1 (i = 1, 2, 3), we want to prove that the difference∣∣δ3A(un)[v1, v2, v3]− δ3A(u)[v1, v2, v3]

∣∣
tends to zero uniformly in vi when n → ∞. Note that δA(u) is formed by a sum of seven
terms. Let us analyze one of the terms that involves the derivative ∂3

xyyL. From now on,
∂3
xyyL(τ) will denote ∂3

xyyL(τ, u(τ), u
′(τ)) and ∂3

xyyLn(τ) will denote ∂3
xyyL(τ, un(τ), u

′
n(τ)).

This notation will also be used in the other derivatives. The term to analyze is∫ 2π

0

∣∣〈(∂3
xyyLn(τ)− ∂3

xyyL(τ))[v
′
3(τ)]v

′
1(τ), v2(τ)

〉∣∣ dτ.

Taking the derivatives in (16), we have that ∂3
xyyL(τ, x, y) = DxA(τ, x). Since the matrix

A(τ, ·) is bounded in C3(Rd) (see (33)), we have that {∂3
xyyLn} converges uniformly to ∂3

xyyL.
That is

∥∂3
xyyLn − ∂3

xyyL∥L∞(R/2πZ) −−−→
n→∞

0. (34)
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By Proposition 1.3 from [16], there is a constant k > 0 such that ∥v2∥L∞(R/2πZ) ≤ k∥v2∥H .
Using this fact, ∥vi∥H ≤ 1 and Hölder inequality, we have∫ 2π

0

∣∣〈(∂3
xyyLn − ∂3

xyyL)[v
′
3]v

′
1, v2

〉∣∣ ≤ k∥∂3
xyyLn − ∂3

xyyL∥L∞(R/2πZ)∥v1∥H∥v2∥H∥v3∥H

≤ k∥∂3
xyyLn − ∂3

xyyL∥L∞(R/2πZ).

Using (34), we have

sup
∥vi∥H≤1
i=1,2,3

∫ 2π

0

∣∣〈(∂xyyL3
n(τ)− ∂3

xyyL(τ))[v
′
3(τ)]v

′
1(τ), v2(τ)

〉∣∣ dτ −−−→
n→∞

0.

For the other terms, we can proceed in a similar way: using the bounds given in (33), we
can prove that

∥∂3
xxxLn − ∂3

xxxL∥L1(R/2πZ) −−−→
n→∞

0,

∥∂3
xxyLn − ∂3

xxyL∥L2(R/2πZ) −−−→
n→∞

0.

With a similar analysis, we have

∥δ3A(un)− δ3A(u)∥L3 = sup
∥vi∥H≤1

∣∣δ3A(un)[v1, v2, v3]− δ3A(u)[v1, v2, v3]
∣∣ −−−→

n→∞
0,

and the result follows.

Under the same hypothesis of Proposition 1, if γ ∈ H is a critical point of the action
functional A, then γ ∈ H2 = H2(R/2πZ,Rd) (that is, γ, γ′ ∈ H). Moreover, the derivative
of γ′, denoted by γ′′, satisfies

A(τ, γ(τ))γ′′ + ∂2
xyL(τ, γ(τ), γ

′(τ))γ′(τ) + ∂2
τyL(τ, γ(τ), γ

′(τ)) = ∂xL(τ, γ(τ), γ
′(τ)), (35)

for almost every τ ∈ R/2πZ (see the proof of Proposition 3.1 from [1]. This implies that
γ ∈ C2(R/2πZ,Rd), and hence it is a classical solution of Eq. (18).

4.2 Gradient and Hessian maps

Since H is a Hilbert space, we can introduce the gradient map of a functional A as the
function that associates any x ∈ H with the unique vector ∇A(x) ∈ H that satisfies

⟨∇A(x), v⟩H = δA(x)v, (36)

for any v ∈ H. Also, we can define the Hessian map D2A(x) : H → H using the second
variation δ2A(x) as follows: given u ∈ H, D2A(x)u ∈ H is the unique vector that satisfies〈

D2A(x)u, v
〉
H
= δ2A(x)[u, v], (37)

for any v ∈ H. Also, since A is in the class C2(H), the map D2A(x) is a symmetric operator
with respect to the inner product given in (31). Let us recall that K ∈ L(H,H) is a compact
linear operator if K(U) has a compact closure in H for every bounded subset U ⊂ H.
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Lemma 6. If x ∈ H2, the operator D2A(x) can be written as

D2A(x) = Φ +K. (38)

where Φ : H → H is an isomorphism and K : H → H is a compact operator.

Proof. From now on, A(τ) will denote A(τ, x(τ)) and ∂2
xyL(τ) will denote ∂

2
xyL(τ, x(τ), x

′(τ)).
This notation will also be used in the other derivatives. Let us consider the linear map u 7→ p,
where

p(τ) = f1(τ)u(τ) + f2(τ)u
′(τ)

and the functions f1 and f2 are given by

f1(τ) = −A(τ) + A′′(τ)−
(
∂2
xyL(τ)

)′
+ ∂2

yxL(τ) + ∂2
xxL(τ),

f2(τ) = A′(τ)− ∂2
xyL(τ).

Using that x ∈ H2 and the bounds given in (33), we can prove that the operator F : H → L2

given by Fu = p is a bounded linear operator. On the other hand, we can define the linear
operator K̃ : L2 → H such that z = K̃p is the unique 2π-periodic solution of

−z′′ + z = p(τ).

The operator K̃ maps bounded sets of L2 in bounded sets of H2 and H2 has a compact
embedding in H. Then, K̃ is a compact operator.

Let us define the linear operators Φ, K : H → H given by Φu = Au and K = K̃ ◦F . The
map Φ is an isomorphism. In fact, since the matrix A satisfies (33) and (17), we have that
Φu ∈ H and the inverse map is given by Φ−1v = A−1v. On the other hand, K is compact
since it is the composition of a bounded linear operator and a compact operator. Finally,
using (37) and letting w = Ku we have

δ2A(x)[u, v] =

∫ 2π

0

[
⟨Au′, v′⟩+ ⟨∂2

xyLu, v
′⟩+ ⟨∂2

yxLu
′, v⟩+ ⟨∂2

xxLu, v⟩
]

=

∫ 2π

0

[
⟨Au, v⟩+ ⟨(Au)′, v′⟩+ ⟨w, v⟩+ ⟨w′, v′⟩

]
= ⟨Au, v⟩H + ⟨w, v⟩H = ⟨D2A(x)u, v⟩H .

From here, we deduce that D2A(x) = Φ +K.

4.3 Regular Critical Manifold

Let us recall that L0 is an autonomous Lagrangian function and Γ ⊂ C2 is a manifold of
periodic solutions. The action functional associated to L0 will be denote by A0.

Since Γ ⊂ C2, we can consider Γ as a differential Ck-submanifold of (the Hilbert space)
H as in Definition 10.1 from [16]. Thus, we can interpret Γ as a critical manifold of A0, that
is, a manifold filled with critical points.
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Definition 3. We say that a Ck-submanifold Γ ⊂ H is a regular critical manifold of A0 if

(i) all points of Γ are critical points of A0,

(ii) the nullity of D2A0(γ) for each γ ∈ Γ is equal to the dimension of Γ,

(iii) D2A0(γ) is a Fredholm operator of index 0 for each γ ∈ Γ.

Recall that a Fredholm operator is an operator with finite-dimensional kernel, its range
is closed and the co-dimension of its range coincides with the dimension of its kernel.

There is a connection between the concept of regular critical manifold of A0 (as in Def-
inition 3) and regular manifold of periodic solutions for the Lagrangian system associated
with L0 (as in Definition 1). In the following lemma, we denote by TγΓ the tangent space
of Γ at γ. From now on, the set R(T ) denotes the range of a linear operator on a Hilbert
space T and T ∗ denotes its adjoint. The orthogonal complements and the adjoint are taken
with respect to the inner product of H given in (31)

Lemma 7. If Γ is a regular manifold of periodic solutions for the autonomous Lagrangian
system associated to L0, then Γ is a regular critical C3-manifold of the action functional A0.

Proof. First, we need to prove that Γ is a compact C3-submanifold of the Hilbert space H,
according to Definition 10.1 from [16]. The main tool will be the Theorem 10.1 of [16]. Since
A0 satisfies (17), we can write Eq. (35) as

x′′ = F (x, x′). (39)

The function F is related to the derivatives of A0, B0 and U0. Since A0, B0,U0 ∈ C4(Rd) we
have that F ∈ C3(Rd × Rd). Let MΓ be the set of initial conditions given in (20). Given
(x0, v0) ∈ MΓ, we denote x(τ ;x0, y0) as the 2π-periodic solution of Eq. (39) with initial
conditions x(0) = x0 and x′(0) = v0. By the differentiable dependence of solutions on the
initial condition, the map

R×MΓ → Rd × Rd, (τ ;x0, v0) → (x(τ ;x0, y0), x
′(τ ;x0, y0))

is in the class C3. As a consequence, the map φ : MΓ → C1(R/2πZ,Rd) given by

φ(x0, v0) = x( · ;x0, v0)

is in the class C3.

We define the map f : MΓ → H by composing the function φ with the inclusion
C1(R/2πZ,Rd) ↪→ H. Clearly, f ∈ C3. Thus, we need to verify points (a), (b), and (c)
from Theorem 10.1 of [16]. To prove Point (a), we need to verify that Γ is a compact mani-
fold. This is true because MΓ is a compact set by hypothesis and they are homeomorphic. To
prove Point (b), we need to verify that f is an injective map. This is valid by the uniqueness
of the initial value problem in Eq. (39). Finally, for Point (c) we need to verify that δf(x0,v0)

is an injective map for every (x0, v0) ∈ MΓ. By chain rule, it is enough to verify that δφ(x0,v0)
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is injective, for every (x0, v0) ∈ MΓ. Let (x0, v0) ∈ MΓ and (u1, u2) ∈ T(x0,v0)(MΓ). By direct
computation, we can prove that u = (δφ)(x0,v0)(u1, u2) is the 2π-periodic solution of the vari-
ational equation (19) with initial conditions u(0) = u1 and u′(0) = u2. The uniqueness of
the initial value problem for Eq. (19) implies that (δφ)(x0,v0) is an injective map (notice that
we can write Eq. (19) in its normal form due the assumption (17)). Therefore, Γ = f(MΓ)
is a compact C3-submanifold of H.

Now, we need to prove Points (i)-(iii) from Definition 3. Point (i) is true since every
function γ ∈ Γ is a 2π-periodic solution of the Lagrangian system associated to L0.

For the second point, let γ ∈ Γ and u ∈ kerD2A0(γ). Then〈
D2A0(γ)u, v

〉
H
= 0, for all v ∈ H.

Using (37), the function u must satisfy

A (τ, γ(τ))u′′ =
[
− ∂3

xyyL0 (γ(τ), γ
′(τ)) γ′(τ)− ∂3

yyyL0 (γ(τ), γ
′(τ)) γ′′(τ)

+ ∂2
yxL0 (γ(τ), γ

′(τ))− ∂2
xyL0 (γ(τ), γ

′(τ))
]
u′

+
[
− ∂3

xxyL0 (γ(τ), γ
′(τ)) γ′(τ)− ∂3

yxyL0 (γ(τ), γ
′(τ)) γ′′(τ)

+ ∂2
xxL0 (γ(τ), γ

′(τ))
]
u.

(40)

Thus, the function u satisfies the variational equation (19). This implies that kerD2A0(γ) =
TγΓ. Since Γ is a regular set of periodic solutions, dim kerD2A0(γ) = dimTγΓ = dimΓ, and
Point (ii) follows.

For the third point, we need to prove that D2A0(γ) is a Fredholm operator of index 0,
that is, R(D2A0(γ)) is closed and codimR(D2A0(γ)) = dimΓ. Let us recall that γ is a
critical point of A0. This implies that γ ∈ H2(R/2πZ,Rd). Then, we can use Lemma 6 to
write D2A0(γ) = Φ +K, where Φ is an isomorphism and K is compact. We have

R
(
D2A0(γ)

)
= R

(
(I +KΦ−1) ◦ Φ

)
= R

(
I +KΦ−1

)
.

Since K is a compact operator, KΦ−1 is also a compact operator. Thus, we can apply the
Fredholm alternative (Theorem 6.6 from [10]) to the operator I + KΦ−1. In particular,
this implies that R

(
D2A0(γ)

)
is closed. Also, D2A0(γ) is symmetric. Then, D2A0(γ) is

self-adjoint. Applying Corollary 2.18 from [10] we have

R
(
D2A0(γ)

)
=

[
ker

(
D2A0(γ)

)]⊥
. (41)

The previous equation implies that codimR(D2A0(γ)) = dimΓ < ∞ and the proof is com-
plete.

Remark 2. In [7], the authors verify the non-degeneracy condition by writing the hessian
of the action functional in its Fourier components.

4.4 Proof of Theorem 2

In this section, we obtain a quantitative result about the existence of critical points of
a family of action functionals associated with an admissible family of Lagrangian functions.
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This result is based on Theorem 2.1 from [5] and will be used to prove Theorem 2. We need
to introduce the quantitative version of the implicit function theorem that we will use. In
the following lemma, we denote by BE(x, r) the open ball in the Banach space E with center
at x ∈ E and radius r > 0.

Lemma 8. Let E,F and G be Banach spaces, let U ⊂ E × F be an open set and let
F : U → G, F = F(x, y) be a function of class C2 such that F(x0, y0) = 0 and the map
δyF(x0, y0) is invertible, for some (x0, y0) ∈ U . Assume that there exist a uniform bound
C > 0 such that ∥δxF∥ ≤ C, ∥δxyF∥ ≤ C, ∥δyyF∥ ≤ C, and ∥δyF(x0, y0)

−1∥ ≤ C. Then,
there are constants R, r > 0 that only depend on C such that BE(x0, R)×BF (y0, r) ⊂ U and
there is a function φ : BE(x0, R) → BF (y0, r) in the class C2 that satisfies φ(x0) = y0 and
φ is the unique solution of the equation

F(x, φ(x)) = 0, x ∈ BE(x0, R).

The proof Lemma 8 is an adaptation of the ideas presented in Lemma 4.2 from [17].

Remark 3. In Lemma 8, we need a bound for the inverse of δyF only at (x0, y0). As
we will see later, we also need a uniform bound for the inverse of the derivative δyF in a
neighborhood of (x0, y0) (see Proof of Theorem 2 below). We can obtain uniform bounds for
δyF using the bounds in δxyF and δyyF . That is, we can find constants R̃ < R and r̃ < r
such that

∥δyF(x, y)−1∥ ≤ C/2, (x, y) ∈ BE(x0, R̃)×BF (y0, r̃).

We denote by NγΓ the orthogonal complement to the tangent space TγΓ, called normal
space. Let Pγ and Qγ be the orthogonal projectors onto NγΓ and TγΓ, respectively. These
projectors define two functions P ,Q : Γ → L(H,H) given by

P(γ) = Pγ; Q(γ) = Qγ.

Since Γ is a C3-manifold, the functions P and Q are in the class C2(Γ) (according to [16])
and their differentials will be denoted by

TγΓ ∋ v
DγP−−−−→ P ′

γv ∈ L(H,H),

TγΓ ∋ v
DγQ−−−−→ Q′

γv ∈ L(H,H).

Lemma 9. Let A = Aε(x) be a family of action functionals associated with an admissible
family of Lagrangian functions L = Lε(τ, x, y) with respect to the regular manifold Γ. Then
there exist a constant ε1 > 0 and a neighborhood G of Γ (that only depend on the bounds
given in (21), ε0, Γ and ϵ) such that for any 0 < ε < ε1 the action functional Aε has, at
least, cat(Γ) critical points xl ∈ G.

Proof. Let F : Γ̂ → H be a function defined on Γ̂ = Γ×H × [0, ε0[ given by

Fε(γ, y) = Pγ∇Aε(γ + y) +Qγy. (42)

22



By Lemma 7, Γ is a regular critical C3-manifold of the action functional A0. Since the
projections are twice differentiable, F is in the class C2(Γ̂). Also, it is clear that F0(γ, 0) = 0.
The derivative δyF : Γ̂ → L(H,H) at (γ, 0; 0) ∈ Γ̂ is given by

δyF0(γ, 0) = Pγ ◦D2A0(γ) +Qγ.

We want to prove that the map v 7→ δyF0(γ, 0)v is an isomorphism of H. First, we will see
that δyF0(γ, 0) is injective. Let v ∈ ker δyF0(γ, 0). This implies that

D2A0(γ)v ∈ kerPγ,

v ∈ NγΓ.

Using Eq. (41) and the fact that Γ is a regular manifold of periodic solutions, we have

D2A0(γ)v ∈ R
(
D2A0(γ)

)
=

[
ker

(
D2A0(γ)

)]⊥
=

(
TγΓ

)⊥
= kerQγ.

Since kerPγ ∩ kerQγ = {0}, we have that v ∈ ker
(
D2A0(γ)

)
= TγΓ. But v ∈ NγΓ, so v = 0

and δyF0(γ, 0) is an injective map.

To prove that δyF0(γ, 0) is a surjective map, let w ∈ H be an arbitrary vector. Then, there
exist two vectors w1 ∈ NγΓ and w2 ∈ TγΓ such that w = w1+w2. Since NγΓ = R(D2A0(γ)),
there is a vector v1 ∈ NγΓ such that D2A0(γ)v1 = w1. Letting v = v1 + w2, we have that
δyF0(γ, 0)v = w. Thus, δyF0(γ, 0) is surjective, and hence, an isomorphism on H.

From now on, Inv(H) ⊂ L(H,H) denotes the set of invertible bounded linear maps.
Let us recall that the map γ ∈ Γ 7→ D2A0(γ) ∈ L(H,H) is continuous since A0 is in
the class C2(Γ). Therefore, γ ∈ Γ 7→ δyF0(γ, 0) ∈ Inv(H) is continuous by the continuity
of the projections and the continuity of the composition of continuous maps. The map
I : Inv(H) → Inv(H) given by I(L) = L−1 is also a continuous map. Therefore, the
composition

γ ∈ Γ 7→
[
δyF0(γ, 0)

]−1 ∈ Inv(H),

is a continuous map defined over a compact set Γ. This implies that there is a constant
C1 > 0 that only depends on Γ, A0, B0, and U0 such that∥∥∥[δyF0(γ, 0)

]−1
∥∥∥
L(H,H)

≤ C1, γ ∈ Γ.

Now, we need to find uniform bounds of the derivatives

δεF : Γ̂ → H, δγF : Γ̂ → L(H,H), δ2εyF : Γ̂ → L(H,H)

δ2γyF : Γ̂ → L(H,L(H,H)), δ2yyF : Γ̂ → L(H,L(H,H)).
(43)

In the following, the term D3Aε(x)[w] ∈ L(H,H) denotes the variation of D2
γAε(x) in the

direction of w ∈ H. The derivatives in (43) becomes

δεFε(γ, y) = Pγ

(
∇(∂εAε)(γ + y)

)
δγFε(γ, y) = P ′

γ

(
∇Aε(γ + y)

)
+ Pγ ◦D2Aε(γ + y) +Q′

γy,

δ2εyFε(γ, y) = Pγ ◦D2(∂εAε)(γ + y)

δ2γyFε(γ, y)[w] = P ′
γ

(
D2Aε(γ + y)w

)
+ Pγ ◦D3Aε(γ + y)[w] +Q′

γw,

δ2yyFε(γ, y)[w] = Pγ ◦D3
γAε(γ + y)[w].

(44)
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The previous derivatives are related with the derivatives of L and hence, with the derivatives
of A, B and U . Thus, they are uniformly bounded by a constant C2 > 0 that only depends
on the bound C given in (21), ε0, Γ, and ϵ.

Applying Lemma 8, for each γ0 ∈ Γ, there exist three positive numbers Rγ0 , rγ0 and
εγ0 that only depend on C1, C2 and there exists a function Yγ0 : BH(γ0, Rγ0) × [0, εγ0 [ →
BH(0, rγ0) in the class C2(BH(γ0, Rγ0)×[0, εγ0 [) satisfying Yγ0(γ0, 0) = 0 and Yγ0 is the unique
solution of

Pγ∇Aε(γ + Yγ0(γ; ε)) +QγYγ0(γ; ε) = 0, (γ; ε) ∈ BH(γ0, Rγ0)× [0, εγ0 [.

Using the uniqueness of Yγ0 for each γ0 ∈ Γ and the compactness of Γ, we can construct a
neighborhood G of Γ and a function Y : Γ × [0, ε1[→ H, where ε1 is a positive constant,
γ + Y (γ; ε) ∈ G for every (γ; ε) ∈ Γ × [0, ε1[ and Y is the unique function in the class
C2(Γ× [0, ε1[) that satisfies Y (γ; 0) = 0, and

Pγ∇Aε(γ + Y (γ; ε)) +QγY (γ; ε) = 0, (γ; ε) ∈ Γ× [0, ε1[. (45)

Both G and ε1 only depend on the bounds given in (21), ε0 and Γ.

Now, we can define the function B : Γ× [0, ε1[ → R in the class C1(Γ× [0, ε1[) given by

Bε(γ) = Aε(γ + Y (γ; ε)).

According to Lemma 10.13 from [16], if ∇Bε(γ) = 0, then ∇Aε(γ + Y (γ; ε)) = 0. So, we
only need to find critical points of Bε.

Since Bε is a function in the class C1(Γ) and Γ is a compact set, the function Bε has at
least n = cat(Γ) critical points, denoted by χl ∈ Γ, χl = χl(τ ; ε), (l = 1, . . . , n). Using the
equivalence between critical points of Aε and Bε, the action functional Aε has cat(Γ) critical
points xl ∈ G of the form

xl(τ ; ε) = χl(τ ; ε) + Y (χl; ε)(τ), l = 1, . . . , n , (46)

and the proof is complete.

Remark 4. In the previous lemma, we need the action functional to be in the class C3(H).
According to [1], this is valid if and only if the associated Lagrangian system is of the form
(16).

Remark 5. The fact that D2A0(γ) is a Fredholm operator of index 0 is only needed to be
able to use Fredholm alternative. Here, the action functional A0 is in the class C2(Γ). This
implies that D2A0(γ) is a symmetric linear operator. Therefore, Point (iii) of Definition 3
can be replaced by the more general condition: The map D2A0(γ) is a closed linear operator
and its kernel is finite-dimensional.

Proof of Theorem 2. Let A : H×[0, ε0[→ R be the action functional given by (32). Applying
Lemma 9, there exists ε′1 < ε0 that only depends on the bounds given in (21), U , ε0, Γ and
ϵ such that, if ε ∈ ]0, ε′1[, there are n = cat(Γ) critical point xl ∈ H, (l = 1, . . . , n) of Aε. In
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addition, x′
l ∈ H (see Eq. (35)) and xl are a critical solution of Lε. This critical points are

of the form given in (46). Let us recall that the function Y satisfies Eq. (45).

On the other hand, let us recall that the map I : Inv(H) → Inv(H) given by I(L) = L−1

is continuous. We know that the compact set K = {δyF0(γ, 0) : γ ∈ Γ} satisfies K ⊂ Inv(H)
(see the proof of Lemma 9). By the continuous dependence of the spectrum of an operator
with respect to parameters, we can find a bounded closed neighborhood K̃ ⊂ Inv(H) of
K that only depends on ε0, U , Γ, C and ϵ such that I(K̃) ⊂ Inv(H). Moreover, since
I maps bounded closed sets into bounded sets, there is a constant C2 that only depends
on K̃ such that ∥L−1∥L(H,H) ≤ C2 for every L ∈ K̃. Since F is in the class C2, the map
ε 7→ δyFε(γ, Y (γ; ε)) is continuous for every γ ∈ Γ. Therefore, there is a constant ε1 < ε′1
such that δyFε(γ, Y (γ; ε)) ∈ K̃ if (γ; ε) ∈ Γ× [0, ε1[ and∥∥∥[δyFε(γ, Y (γ; ε))

]−1
∥∥∥
L(H,H)

≤ C2, (γ; ε) ∈ Γ× [0, ε1[.

Using implicit derivation in (45), the first derivative ∂εY becomes

∂εY (γ; ε) = −
[
δyFε

(
γ, Y (γ; ε)

)]−1
δεFε

(
γ, Y (γ; ε)

)
, (γ; ε) ∈ Γ× [0, ε1[.

The term ∂εFε(γ, y) is uniformly bounded (see (44)). The term [δyFε(γ, y)]
−1 is uniformly

bounded, by Remark 3. Thus, the first derivative ∂εY (γ; ε) is uniformly bounded. Also,
using the second equation of (44) we have

δεF0(γ, 0) = Pγ

(
∇(∂εAε)(γ)

∣∣∣
ε=0

)
.

We can compute ∇(∂εAε) from (36), obtaining

⟨∇(∂εAε)(γ), v⟩H =

∫ 2π

0

[〈
∂

∂x

(
∂Lε

∂ε
(τ, γ(τ), γ′(τ))

)
, v(τ)

〉
+〈

∂

∂y

(
∂Lε

∂ε
(τ, γ(τ), γ′(τ))

)
, v′(τ)

〉]
dτ.

Using Point (ii) of Definition 2, we have〈
∇(∂εAε)(γ)

∣∣∣
ε=0

, v
〉
H
= 0,

for every v ∈ H. Therefore, δεF0(γ, 0) = 0 and

∂εY (γ; 0) = 0, γ ∈ Γ.

Proceeding in a similar way, we can prove that the second derivative is given by

∂2
εεY (γ; ε) = −

[
δyFε

(
γ, Y (γ; ε)

)]−1
{
δ2εεFε

(
γ, Y (γ; ε)

)
+ 2δ2εyFε

(
γ, Y (γ; ε)

)
∂εY (γ; ε)+

δ2yyFε

(
γ, Y (γ; ε)

)[
∂εY (γ; ε), ∂εY (γ; ε)

]}
, (γ; ε) ∈ Γ× [0, ε1[.
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The term δ2εεFε(γ, y) is given by

δ2εεFε

(
γ, y

)
= Pγ

(
∇(∂2

εAε)(γ + y)
)

and it is uniformly bounded by the bounds given in (33) and ϵ (the dependence on ϵ is
because we use (17) to write the differential equation that satisfies ∇(∂2

εAε)(γ + y) in its
normal form). The other terms in the previous equation are also uniformly bounded (see
(44) and Remark 3). Therefore, the second derivative ∂2

εεY is uniformly bounded. Using the
Taylor expansion for Y , there is a constant c that only depends on ε0, U , Γ and ϵ such that

∥Y (γ; ε)∥H ≤ cε2, (γ; ε) ∈ Γ× [0, ε1[.

Finally, the distance between the solutions xl and Γ satisfies

distH(xl,Γ) ≤ ∥xl(·; ε)− χl(·; ε)∥H = ∥Y (xl; ε)∥H ≤ cε2, l = 1, . . . , n

and the proof is complete.
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