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Abstract

Sufficient conditions for the existence of a solution to the problem

u′′(t) =
g(t)
uµ(t)

− h(t)
uλ(t)

+ f(t) for a. e. t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω)

are established.
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Introduction

In this paper, we are concerned with the periodic problem

u′′(t) =
g(t)

uµ(t)
− h(t)

uλ(t)
+ f(t) for a. e. t ∈ [0, ω], (0.1)

u(0) = u(ω), u′(0) = u′(ω), (0.2)

where g, h ∈ L
(
R/ωZ; R+

)
, f ∈ L

(
R/ωZ; R

)
, and λ, µ > 0. By a solution to (0.1),

(0.2) we understand a function u ∈ AC1
(
R/ωZ; R

)
satisfying (0.1). Special cases of the
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equation (0.1) are

u′′(t) =
g(t)

uµ(t)
− h(t)

uλ(t)
for a. e. t ∈ [0, ω], (0.3)

u′′(t) = − h(t)

uλ(t)
+ f(t) for a. e. t ∈ [0, ω], (0.4)

u′′(t) =
g(t)

uµ(t)
+ f(t) for a. e. t ∈ [0, ω]. (0.5)

In the related literature, it is said that (0.4) has an attractive singularity, whereas (0.5)
has a repulsive singularity. The interest on this type of equations began with the paper
of Lazer and Solimini [7], where the authors provide necessary and sufficient conditions
for existence of periodic solutions of eq. (0.4) and (0.5) with constant positive functions
h, g and a continuous forcing term f . Their proofs can be easily extended to the case
when the function h, resp. g is bounded from below by some positive constant (see
the generalized results presented in the paper of Habets and Sanchez [3]), but in their
arguments this hypothesis is essential and cannot be omitted. In the repulsive case, a
strong force assumption (µ ≥ 1) is also essential.

The equation (0.3) is interesting due to a mixed type of singularity on the right–hand
side. Since the functions g and h are possibly zero on some sets of positive measure, the
singularity may combine attractive and repulsive effects. If h, g are positive constants,
the singular term can be regarded as a generalized Lennard-Jones force or van der Waals
attraction/repulsion force and it is widely use in Molecular Dynamics to model the inter-
action between atomic particles (see for instance [4, 9, 12, 15] and the references therein).
In a different physical context, a periodic solution of equation (0.3) is equivalent to a
matter-wave breather in a Bose-Einstein condensate with a periodic control of the scat-
tering length (the mathematical model is a nonlinear Schrödinger equation with a cubic
term, then the method of moments leads to the study of a particular case of (0.3), see [8]
for more details. Finally, a third different range of applicability is the evolution of optical
pulses in dispersion-managed fiber communication devices [6].

In spite of the variety of physical applications, the analysis of differential equations
with mixed singularities is at this moment very incomplete, and few references can be
cited (see [1, 5, 13]) if compared with the large number of references devoted to singular
equations, either of attractive or repulsive type (see the review [10] and the references
therein). Our main purpose in this paper is to contribute to the literature trying to
fill partially this gap in the study of singularities of mixed type with an approach that
should be useful as a starting point for further studies. Incidentally, our main results
can be applied to the original Lazer-Solimini equations both in the attractive and in the
repulsive case, giving new sufficient conditions for existence of periodic solutions when
the functions h and g are possibly zero on the sets of positive measure.

The structure of the paper is as follows: Section 2 contains the tools needed in the
proofs. In Section 3 we state and prove the main results and develop some corollaries for
the equation with a singularity of mixed type. To illustrate the results, an application to
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the dynamics of a trapless Bose-Einstein condensate is given. This model and related ones
deserve a different treatment more oriented to a physical audience, that will be performed
elsewhere. Finally, due its relevance in the related literature we have decided to devote
Sections 4 and 5 to perform a comparative study of the equation with attractive (resp.
repulsive) singularity. Along the paper, some open problems are posed. We feel that their
consideration will bring light to this subject in the future.

The following notation is used throughout the paper:
R is a set of all real numbers, R+ = [0,+∞[ , [x]+ = max{x, 0}, [x]− = max{−x, 0}.
L
(
R/ωZ; R

)
is the Banach space of ω-periodic Lebesgue integrable functions p :

R/ωZ→ R.
AC1

(
R/ωZ; R

)
is a set of all ω-periodic functions u : R/ωZ → R such that u and u′

are absolutely continuous.
L
(
R/ωZ; R+

)
=
{
p ∈ L

(
R/ωZ; R

)
: p(t) ≥ 0 for a. e. t ∈ [0, ω]

}
.

Notation 0.1. For the sake of brevity we will use the following notation throughout the
paper:

G =

∫ ω

0

g(s)ds, H =

∫ ω

0

h(s)ds,

F =

∫ ω

0

f(s)ds, F+ =

∫ ω

0

[f(s)]+ds, F− =

∫ ω

0

[f(s)]−ds.

Note that F = F+ − F−.

1 Auxiliary results

The proofs of our results rely on the method of upper and lower functions. The following
two lemmas are classical and can be found, e.g., in [2, 14]. We introduce them in a form
suitable for us.

Lemma 1.1. Let there exist positive functions α, β ∈ AC1
(
R/ωZ; R

)
such that

α′′(t) ≥ g(t)

αµ(t)
− h(t)

αλ(t)
+ f(t) for a. e. t ∈ [0, ω], (1.1)

β′′(t) ≤ g(t)

βµ(t)
− h(t)

βλ(t)
+ f(t) for a. e. t ∈ [0, ω], (1.2)

α(t) ≤ β(t) for t ∈ [0, ω].

Then there exists at least one positive solution to (0.1), (0.2).

A function α ∈ AC1
(
R/ωZ; R

)
(resp. β ∈ AC1

(
R/ωZ; R

)
) verifying (1.1) (resp. (1.2))

is called lower (resp. upper) function. When the order between the lower and the upper
function is the inverse, an additional hypothesis is needed.
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Definition 1.1. A function ϕ ∈ L
(
R/ωZ; R+

)
is said to verify the property (P ) if the

implication

u ∈ AC1
(
R/ωZ; R

)
u′′(t) + ϕ(t)u(t) ≥ 0 for a. e. t ∈ [0, ω]

}
=⇒ u(t) ≥ 0 for t ∈ [0, ω]

holds.

Lemma 1.2. Let there exist positive functions α, β ∈ AC1
(
R/ωZ; R

)
satisfying (1.1),

(1.2) and
β(t) ≤ α(t) for t ∈ [0, ω].

Let, moreover, there exists ϕ ∈ L
(
R/ωZ; R+

)
with the property (P ) and such that

g(t)

uµ(t)
− h(t)

uλ(t)
−
(
g(t)

vµ(t)
− h(t)

vλ(t)

)
≤ ϕ(t)

(
v(t)− u(t)

)
for a. e. t ∈ [0, ω], (1.3)

whenever β(t) ≤ u(t) ≤ v(t) ≤ α(t) for t ∈ [0, ω]. Then there exists at least one positive
solution to (0.1), (0.2).

Property (P ) is just a maximum principle for the linear operator Lu := u′′+ϕ(t)u with
periodic boundary conditions, and it is equivalent to have a nonnegative Green function.
The reference [14] provides sufficient conditions in the Lp-norm for ϕ(t) to verify property
(P ). In particular, we have the following lemma.

Lemma 1.3. Let us assume that ϕ ∈ L
(
R/ωZ; R+

)
, ϕ 6≡ 0, and at least one of the

following conditions holds:

i) ϕ(t) ≤
(
π
ω

)2
for a. e. t ∈ [0, ω],

ii)
∫ ω

0
ϕ(t)dt ≤ 4

ω
.

Then, ϕ verifies the property (P ).

To finish this section, we show a technical bound on the amplitude of oscillation of a
periodic function.

Lemma 1.4. Given v ∈ AC1
(
R/ωZ; R

)
, then

Mv −mv ≤
ω

4

∫ ω

0

[v′′(s)]+ds, (1.4)

where
Mv = max

{
v(t) : t ∈ [0, ω]

}
, mv = min

{
v(t) : t ∈ [0, ω]

}
. (1.5)

Moreover, (1.4) is fulfilled as an equality if and only if v is a constant function.
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Proof. If v is a constant function, then (1.4) follows trivially.
Let, therefore, v be a non–constant function and choose t0, t1 ∈ [0, ω] such that

v(t0) = Mv, v(t1) = mv.

Without loss of generality we can assume that t0 < t1. Indeed, in the case where t1 < t0
we can consider a function −v instead of v and using the fact that v ∈ AC1

(
R/ωZ; R

)
we have ∫ ω

0

[v′′(s)]+ds =

∫ ω

0

[v′′(s)]−ds =

∫ ω

0

[−v′′(s)]+ds.

Put
M1 = max

{
v′(t) : t ∈ [0, ω]

}
, m1 = min

{
v′(t) : t ∈ [0, ω]

}
.

Then, obviously, M > 0, m < 0 and by the periodicity of v and continuity of v′ we have

Mv −mv =

t0∫
0

v′(s)ds+

ω∫
t1

v′(s)ds < M1(t0 + ω − t1) (1.6)

and

Mv −mv = −
t1∫
t0

v′(s)ds < −m1(t1 − t0). (1.7)

On the other hand, we have Mv −mv ≥ 0 and thus the multiplying of the corresponding
sides of (1.6) and (1.7) results in

(Mv −mv)
2 < −m1M1(t0 + ω − t1)(t1 − t0). (1.8)

Now using the inequality AB ≤ 1
4
(A+B)2, from (1.8) we get

(Mv −mv)
2 <

(M1 −m1)
2ω2

16
,

whence the inequality

Mv −mv <
ω

4
(M1 −m1) (1.9)

follows.
On the other hand, choose t2, t3 ∈ [0, ω] such that

v′(t2) = M1, v′(t3) = m1.

If t2 < t3 then by using again that v is ω-periodic we have

M1 −m1 = M1 − v′(0) + v′(ω)−m1 =

t2∫
0

v′′(s)ds+

ω∫
t3

v′′(s)ds ≤
∫ ω

0

[v′′(s)]+ds.
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If t3 < t2 then

M1 −m1 =

t2∫
t3

v′′(s)ds ≤
∫ ω

0

[v′′(s)]+ds.

Consequently, in both cases t2 ≤ t3 and t3 < t2 we have

M1 −m1 ≤
∫ ω

0

[v′′(s)]+ds

which together with (1.9) implies (1.4).

2 The general case.

The following theorems are the main results of the paper.

Theorem 2.1. Let h 6≡ 0, F > 0, functions w, σ ∈ AC1
(
R/ωZ; R

)
be such that the

equalities

w′′(t) = Hg(t)−Gh(t) for a. e. t ∈ [0, ω], (2.1)

σ′′(t) = −F
H
h(t) + f(t) for a. e. t ∈ [0, ω] (2.2)

are fulfilled 3 and let there exist x0 ∈ ]0,+∞[ such that

x0

(
w(t)−mw

)
+ σ(t)−mσ ≤

(
H

x0GH + F

)1/λ

−
(

1

x0H

)1/µ

for t ∈ [0, ω], (2.3)

where
mw = min

{
w(t) : t ∈ [0, ω]

}
, mσ = min

{
σ(t) : t ∈ [0, ω]

}
. (2.4)

Then the problem (0.1), (0.2) has at least one positive solution.

Proof. Put

α(t) =

(
1

x0H

)1/µ

+ x0

(
w(t)−mw

)
+ σ(t)−mσ for t ∈ [0, ω].

Then, obviously, α ∈ AC1
(
R/ωZ; R

)
and in view of (2.1) and (2.2) we have

α′′(t) = x0Hg(t)−
(
x0G+

F

H

)
h(t) + f(t) for a. e. t ∈ [0, ω]. (2.5)

Moreover, according to (2.3) and (2.4),(
1

x0H

)1/µ

≤ α(t) ≤
(

H

x0GH + F

)1/λ

for t ∈ [0, ω]. (2.6)

3see Remark 2.1 below.

6



Now (2.5) and (2.6) imply

α′′(t) ≥ g(t)

αµ(t)
− h(t)

αλ(t)
+ f(t) for a. e. t ∈ [0, ω].

Consequently, α is a lower function to (0.1), (0.2).
Further, we can choose x1 ∈ ]0, x0] such that

x1

(
w(t)−mw

)
+ σ(t)−mσ ≤

(
1

x1H

)1/µ

−
(

H

x1GH + F

)1/λ

for t ∈ [0, ω] (2.7)

and put

β(t) =

(
H

x1GH + F

)1/λ

+ x1

(
w(t)−mw

)
+ σ(t)−mσ for t ∈ [0, ω].

Then, β ∈ AC1
(
R/ωZ; R

)
and in view of (2.1) and (2.2) we have

β′′(t) = x1Hg(t)−
(
x1G+

F

H

)
h(t) + f(t) for a. e. t ∈ [0, ω]. (2.8)

Moreover, according to (2.4) and (2.7),(
H

x1GH + F

)1/λ

≤ β(t) ≤
(

1

x1H

)1/µ

for t ∈ [0, ω]. (2.9)

Now (2.8) and (2.9) imply

β′′(t) ≤ g(t)

βµ(t)
− h(t)

βλ(t)
+ f(t) for a. e. t ∈ [0, ω].

Consequently, β is an upper function to (0.1), (0.2).
Moreover, (2.6) and (2.9) imply

α(t) ≤ β(t) for t ∈ [0, ω]. (2.10)

Thus the assertion follows from Lemma 1.1.

Remark 2.1. Note that for every q ∈ L
(
R/ωZ; R

)
such that

∫ ω
0
q(t)dt = 0, the periodic

solution v of the equation

v′′(t) = q(t) for a. e. t ∈ [0, ω]

is given by the Green formula

v(t) = − 1

ω

(ω − t)
t∫

0

sq(s)ds+ t

ω∫
t

(ω − s)q(s)ds

+ c for t ∈ [0, ω], (2.11)

where c ∈ R. Therefore, the periodic functions w and σ with properties (2.1) and (2.2)
exist and, moreover, are unique up to a constant term, the value of which has no influence
on the validity of the condition (2.3). A similar observation can be made in relation to
the formulations of the theorems given below.
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Theorem 2.2. Let λ > µ, h 6≡ 0, g 6≡ 0, F = 0, functions w, σ ∈ AC1
(
R/ωZ; R

)
be such

that the equalities (2.1) and

σ′′(t) = f(t) for a. e. t ∈ [0, ω] (2.12)

are fulfilled, and let there exist x0 ∈ ]0,+∞[ such that

x0

(
w(t)−mw

)
+ σ(t)−mσ ≤

(
1

x0G

)1/λ

−
(

1

x0H

)1/µ

for t ∈ [0, ω], (2.13)

where mw and mσ are defined by (2.4). Then the problem (0.1), (0.2) has at least one
positive solution.

Proof. Note that the inequality λ > µ implies

lim
x→0+

(
1

xH

)1/µ

−
(

1

xG

)1/λ

= +∞.

Therefore, analogously to the proof of Theorem 2.1, one can show that there exist lower
and upper functions α, β satisfying (2.10). Consequently, the assertion follows from
Lemma 1.1.

Corollary 2.1. Let λ > µ, h 6≡ 0, g 6≡ 0, and let w ∈ AC1
(
R/ωZ; R

)
be such that (2.1)

is fulfilled. Let, moreover,

Mw −mw ≤
H

1+λ
λ−µ

G
1+µ
λ−µ

(
(1 + λ)µ

(1 + µ)λ

) (1+λ)µ
λ−µ λ− µ

(1 + µ)λ
, (2.14)

where mw is given by (2.4) and

Mw = max
{
w(t) : t ∈ [0, ω]

}
. (2.15)

Then the problem (0.3), (0.2) has at least one positive solution.

Proof. In order to apply Theorem 2.2, put f ≡ 0, then σ ≡ 0. Take

x0 =

(
(1 + µ)λ

(1 + λ)µ

) λµ
λ−µ G

µ
λ−µ

H
λ

λ−µ
.

Then (2.14) implies (2.13), and thus the assertion follows from Theorem 2.2.

At this stage, Lemma 1.4 enables us to give a first concrete existence criterion.

Corollary 2.2. Let λ > µ, h 6≡ 0, and g 6≡ 0. Let, moreover,

G1+λ

H1+µ
≤
(

4

ω

)λ−µ(
(1 + λ)µ

(1 + µ)λ

)(1+λ)µ(
λ− µ

(1 + µ)λ

)λ−µ
. (2.16)

Then the problem (0.3), (0.2) has at least one positive solution.
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Proof. By Lemma 1.4, it is easy to verify that

Mw −mw ≤
ω

4
GH.

Now the assertion follows directly from Corollary 2.1.

To illustrate this latter result, we have selected a concrete physical model studied
in [8, Section 5]. The dynamics of a trapless 3D Bose-Einstein condensate with variable
scattering length is ruled by the equation

u′′(t) =
Q1

u3
+
a(t)Q2

u4
, (2.17)

where Q1, Q2 are positive parameters and a(t) models the s-wave scattering length, which
is assumed to vary ω-periodically in time. A negative a(t) corresponds to attractive
interactions between the elementary particles. Then the existence of a positive periodic
solution of (2.17) is interpreted as a bound state of the condensate without external trap.
Equation (2.17) is a particular case of (0.3) with µ = 3, λ = 4. Then, a direct consequence
of Corollary 2.2 is the existence of ω-periodic solution of (2.17) for any a ∈ L

(
R/ωZ; R

)
,

a(t) ≤ 0 for a. e. t, such that(∫ ω

0

a(t)dt

)4

≥
(

16

15

)15
4Q5

1ω
6

Q4
2

' 10.5315
Q5

1ω
6

Q4
2

.

The following results are devoted to the remaining cases F < 0 and µ > λ. We are
compelled to construct upper and lower functions on the reversed order.

Theorem 2.3. Let g 6≡ 0, F < 0, functions w, σ ∈ AC1
(
R/ωZ; R

)
be such that the

equalities (2.1) and

σ′′(t) =
|F |
G
g(t) + f(t) for a. e. t ∈ [0, ω] (2.18)

are fulfilled, and let there exist x0 ∈ ]0,+∞[ such that

x0

(
w(t)−mw

)
+ σ(t)−mσ ≤

(
G

x0GH + |F |

)1/µ

−
(

1

x0G

)1/λ

for t ∈ [0, ω], (2.19)

where mw and mσ are defined by (2.4). Moreover, let us define

β(t) =

(
1

x0G

)1/λ

+ x0

(
w(t)−mw

)
+ σ(t)−mσ for t ∈ [0, ω] (2.20)

and assume that ϕ(t) = µg(t)
β1+µ(t)

verifies the property (P ). Then the problem (0.1), (0.2)
has at least one positive solution.
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Proof. Put

β(t) =

(
1

x0G

)1/λ

+ x0

(
w(t)−mw

)
+ σ(t)−mσ for t ∈ [0, ω].

Then, β ∈ AC1
(
R/ωZ; R

)
and in view of (2.1) and (2.18) we have

β′′(t) =

(
x0H +

|F |
G

)
g(t)− x0Gh(t) + f(t) for a. e. t ∈ [0, ω]. (2.21)

Moreover, according to (2.4) and (2.19),(
1

x0G

)1/λ

≤ β(t) ≤
(

G

x0GH + |F |

)1/µ

for t ∈ [0, ω]. (2.22)

Now (2.21) and (2.22) imply

β′′(t) ≤ g(t)

βµ(t)
− h(t)

βλ(t)
+ f(t) for a. e. t ∈ [0, ω].

Consequently, β is an upper function to (0.1), (0.2).
Further, we can choose x1 ∈ ]0, x0] such that

x1

(
w(t)−mw

)
+ σ(t)−mσ ≤

(
1

x1G

)1/λ

−
(

G

x1GH + |F |

)1/µ

for t ∈ [0, ω] (2.23)

and put

α(t) =

(
G

x1GH + |F |

)1/µ

+ x1

(
w(t)−mw

)
+ σ(t)−mσ for t ∈ [0, ω].

Then, α ∈ AC1
(
R/ωZ; R

)
and in view of (2.1) and (2.18) we have

α′′(t) =

(
x1H +

|F |
G

)
g(t)− x1Gh(t) + f(t) for a. e. t ∈ [0, ω]. (2.24)

Moreover, according to (2.4) and (2.23),(
G

x1GH + |F |

)1/µ

≤ α(t) ≤
(

1

x1G

)1/λ

for t ∈ [0, ω]. (2.25)

Now (2.24) and (2.25) imply

α′′(t) ≥ g(t)

αµ(t)
− h(t)

αλ(t)
+ f(t) for a. e. t ∈ [0, ω].
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Consequently, α is a lower function to (0.1), (0.2) and according to (2.22) and (2.25) we
have

β(t) ≤ α(t) for t ∈ [0, ω]. (2.26)

Furthermore, note that a function

ψ(y) =
µ

β1+µ
y +

1

yµ

is nondecreasing for y ≥ β. Therefore we have

g(t)

(
µ

β1+µ(t)
u(t) +

1

uµ(t)

)
− h(t)

uλ(t)
≤ g(t)

(
µ

β1+µ(t)
v(t) +

1

vµ(t)

)
− h(t)

vλ(t)
for t ∈ [0, ω]

whenever β(t) ≤ u(t) ≤ v(t) for t ∈ [0, ω], whence we get

g(t)

uµ(t)
− h(t)

uλ(t)
−
(
g(t)

vµ(t)
− h(t)

vλ(t)

)
≤ µg(t)

β1+µ(t)
(v(t)− u(t)).

Thus the assertion follows from Lemma 1.2.

Theorem 2.4. Let µ > λ, h 6≡ 0, g 6≡ 0, F = 0, functions w, σ ∈ AC1
(
R/ωZ; R

)
be such

that the equalities (2.1) and (2.12) are fulfilled, and let there exist x0 ∈ ]0,+∞[ such that

x0

(
w(t)−mw

)
+ σ(t)−mσ ≤

(
1

x0H

)1/µ

−
(

1

x0G

)1/λ

for t ∈ [0, ω], (2.27)

where mw and mσ are defined by (2.4). Moreover, assume that ϕ(t) = µg(t)
β1+µ(t)

verifies the

property (P ), where β is given by (2.20). Then the problem (0.1), (0.2) has at least one
positive solution.

Proof. Note that the inequality µ > λ implies

lim
x→0+

(
1

xG

)1/λ

−
(

1

xH

)1/µ

= +∞.

Therefore, analogously to the proof of Theorem 2.3, one can show that there exist lower
and upper functions α, β satisfying (2.26). Consequently, the assertion follows from

Lemma 1.2 with ϕ(t) = µg(t)
β1+µ(t)

.

Corollary 2.3. Let µ > λ, h 6≡ 0, g 6≡ 0, w ∈ AC1
(
R/ωZ; R

)
be such that (2.1) is

fulfilled, and let

Mw −mw ≤
G

1+µ
µ−λ

H
1+λ
µ−λ

(
(1 + µ)λ

(1 + λ)µ

) (1+µ)λ
µ−λ µ− λ

(1 + λ)µ
, (2.28)

11



where mw and Mw are given by (2.4) and (2.15), respectively. Moreover, let us define

β(t) =

(
(1 + µ)λ

(1 + λ)µ

) µ
µ−λ
(
G

H

) 1
µ−λ

+

(
(1 + λ)µ

(1 + µ)λ

) λµ
µ−λ H

λ
µ−λ

G
µ

µ−λ

(
w(t)−mw

)
for t ∈ [0, ω] (2.29)

and assume that ϕ(t) = µg(t)
β1+µ(t)

verifies the property (P ). Then the problem (0.3), (0.2)
has at least one positive solution.

Proof. Put f ≡ 0 and

x0 =

(
(1 + λ)µ

(1 + µ)λ

) λµ
µ−λ H

λ
µ−λ

G
µ

µ−λ
.

Then the assertion follows from Theorem 2.4.

Corollary 2.4. Let µ > λ, h 6≡ 0, and g 6≡ 0. Let, moreover,

H1+µ

G1+λ
≤
(

4

ω

)µ−λ(
(1 + µ)λ

(1 + λ)µ

)(1+µ)λ(
µ− λ

(1 + λ)µ

)µ−λ
×

×min

{
1,

(
1 + λ

µ− λ

)µ−λ(
(1 + µ)λ

(1 + λ)µ

)(µ−λ)(1+µ)
}
. (2.30)

Then the problem (0.3), (0.2) has at least one solution.

Proof. According to Lemma 1.4, the inequality (2.30) implies (2.28) and moreover, after
some tedious computations one has∫ ω

0

ϕ(s)ds = µ

∫ ω

0

g(s)

β1+µ(s)
ds ≤ 4

ω
,

with β defined by (2.29). Consequently, by Lemma 1.3, ϕ(t) = µg(t)
β1+µ(t)

verifies the property

(P ) and the assertion follows from Corollary 2.3.

To finish this section, we remark that our approach does not cover the case λ = µ,
F = 0 which is of particular interest for applications (see the introduction of [1]). The
following problem is unsolved.

Open problem 2.1. If λ = µ, we know that H > G > 0 is a necessary condition for the
existence of a positive solution of problem (0.3) (0.2). Prove that it is also sufficient.

12



3 The attractive case.

In this section we focus on the equation with a pure attractive singularity, that is, the
case when g ≡ 0.

Corollary 3.1. Let h 6≡ 0, F > 0, σ ∈ AC1
(
R/ωZ; R

)
be such that (2.2) is fulfilled, and

let (
Mσ −mσ

)λ
F < H, (3.1)

where mσ is defined by (2.4) and

Mσ = max
{
σ(t) : t ∈ [0, ω]

}
. (3.2)

Then the problem (0.4), (0.2) has at least one positive solution.

Proof. The assertion follows from Theorem 2.1 with g ≡ 0.

Corollary 3.2. Let h 6≡ 0, F > 0, and let(ω
4
F+

)λ
F ≤ H. (3.3)

Then the problem (0.4), (0.2) has at least one positive solution.

Proof. By Lemma 1.4, in view of F > 0, we have

Mσ −mσ <
ω

4
F+.

Now the assertion follows from Corollary 3.1 in a trivial way.

The latter result is new even for the original equation posed by Lazer and Solimini,

u′′(t) = − 1

uλ(t)
+ f(t). (3.4)

In [7], it is proved that if f is continuous and ω-periodic, then F > 0 is a necessary
and sufficient condition for the existence of a positive ω-periodic solution. Here we are
extending partially this result to the case when f ∈ L

(
R/ωZ; R

)
. On the other hand,

even if f is continuous, then F > 0 is not sufficient condition for the existence of a positive
ω-periodic solution to the equation (0.4) in the case, when h is possibly zero on the set
of a positive measure, as shown in the following example.
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Counter–example 3.1. Let ε ∈ ]0, ω/4[ and put

f(t) =


0 for t ∈ [0, ω

2
− ε[∪ ]ω

2
+ ε, ω]

2
ε
(t− ω

2
+ ε) for t ∈ ]ω

2
− ε, ω

2
[

2
ε
(ω

2
+ ε− t) for t ∈ [ω

2
, ω

2
+ ε[

,

h(t) =


− t2

2
+ ε(ω

2
− ε) for t ∈ [0, ε[

0 for t ∈ [ε, ω − ε[
− (ω−t)2

2
+ ε(ω

2
− ε) for t ∈ [ω − ε, ω]

,

v(t) =



− t2

2
+ ε(ω

2
− ε) for t ∈ [0, ε[

ε(ω
2
− t)− ε2

2
for t ∈ [ε, ω

2
− ε[

(t−ω
2
+ε)3

3ε
+ ε(ω

2
− t)− ε2

2
for t ∈ [ω

2
− ε, ω

2
[

(ω
2
+ε−t)3

3ε
+ ε(t− ω

2
)− ε2

2
for t ∈ [ω

2
, ω

2
+ ε[

ε(t− ω
2
)− ε2

2
for t ∈ [ω

2
+ ε, ω − ε[

− (ω−t)2
2

+ ε(ω
2
− ε) for t ∈ [ω − ε, ω]

,

and

σ(t) = − 1

ω

(ω − t)
t∫

0

s

(
−F
H
h(s) + f(s)

)
ds+ t

ω∫
t

(ω − s)
(
−F
H
h(s) + f(s)

)
ds

 ,
where

H =

∫ ω

0

h(s)ds = 2ε2
(ω

2
− ε
)
− ε3

3
, F = F+ =

∫ ω

0

f(s)ds = 2ε.

Obviously, f is continuous, v, σ ∈ AC1
(
R/ωZ; R

)
, σ(t) = σ(ω − t) for t ∈ [0, ω], and

consequently, σ′(t) = −σ′(ω − t) for t ∈ [0, ω]. Therefore,

σ′(ω) = σ′(0) = −σ′(ω), σ′(ω/2) = −σ′(ω/2),

which implies σ′(0) = 0, σ′(ω/2) = 0. Moreover, now it can be easily verified that

max
{
σ(t) : t ∈ [0, ω]

}
= σ(0), min

{
σ(t) : t ∈ [0, ω]

}
= σ(ω/2).

Thus

Mσ −mσ = σ(0)− σ(ω/2) = ε
(ω

2
− ε
)

+
ε2

6
+

ε3

12ω − 28ε
,

H

F
= ε

(ω
2
− ε
)
− ε2

6
,

ω

4
F+ =

ω

2
ε.

We will show that the problem

u′′ = −h(t)

u
+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3.5)
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has no positive solution. Suppose on the contrary, that there exists a positive solution u
to (3.5). Put w(t) = v(t)− u(t) for t ∈ [0, ω]. Then

w′′ = p(t)w; w(0) = w(ω), w′(0) = w′(ω)

with

p(t) =

{
1
u(t)

for t ∈ [0, ε[∪ [ω − ε, ω]

0 for t ∈ [ε, ω − ε[
.

Consequently w ≡ 0, i.e. u ≡ v. However, v(ω/2) = −ε2/6 < 0, which contradicts our
assumption.

This example shows that the inequalities (3.1) and (3.3) in Corollaries 3.1 and 3.2 are
optimal in a certain sense and cannot be improved. In particular, the condition (3.1),
resp. (3.3), cannot be replaced by the condition(

Mσ −mσ

)λ
F ≤ H + ε,

resp. (ω
4
F+

)λ
F ≤ H + ε,

no matter how small ε is.
We finish the section with two open questions.

Open problem 3.1. Let us assume f ∈ L
(
R/ωZ; R

)
, and λ > 0. Prove or disprove that

F > 0 is a necessary and sufficient condition for the existence of a ω-periodic positive
solution of the Lazer-Solimini equation (3.4).

Open problem 3.2. Let us assume h ∈ L
(
R/ωZ; R+

)
, f ∈ L

(
R/ωZ; R

)
, λ > 0, and

meas
{
t ∈ [0, ω] : h(t) = 0

}
= 0.

Find a condition different from (3.1) (resp. (3.3)) sufficient for the existence of a positive
solution of problem (0.4), (0.2).

4 The repulsive case.

Finally, we analyze the equation with a pure repulsive singularity, that is, the case when
h ≡ 0.

Corollary 4.1. Let g 6≡ 0, F < 0, σ ∈ AC1
(
R/ωZ; R

)
be such that (2.18) is fulfilled,

and let (
Mσ −mσ

)µ|F | < G, (4.1)

where mσ and Mσ is defined by (2.4) and (3.2), respectively. Let, moreover, either

µ|F |
1+µ
µ g(t)(

G1/µ − |F |1/µ
(
Mσ − σ(t)

))1+µ ≤
(π
ω

)2

for a. e. t ∈ [0, ω], (4.2)
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or

µ|F |
1+µ
µ

∫ ω

0

g(s)(
G1/µ − |F |1/µ

(
Mσ − σ(s)

))1+µds ≤
4

ω
. (4.3)

Then the problem (0.5), (0.2) has at least one positive solution.

Proof. Put h ≡ 0,

x0 =
|F |λ/µ

G(G1/µ − |F |1/µ(Mσ −mσ))λ
,

and define a function β by (2.20). After some algebra,

β(t) =

(
G

|F |

)1/µ

−Mσ + σ(t) for t ∈ [0, ω]

and each of (4.2) and (4.3) guarantees that ϕ(t) = µg(t)
β1+µ(t)

satisfies the property (P ).

Moreover, (4.1) yields (2.19). Therefore the assertion follows from Theorem 2.3.

Corollary 4.2. Let g 6≡ 0 and F < 0. Let, moreover,(ω
4
µG
) 1

1+µ |F |1/µ +
ω

4
F−|F |1/µ ≤ G1/µ. (4.4)

Then the problem (0.5), (0.2) has at least one positive solution.

Proof. According to Lemma 1.4,

Mσ −mσ ≤
ω

4
F−.

Then, the inequality (4.4) implies both (4.1) and (4.3). Consequently, the assertion follows
from Corollary 4.1.

Again, this result is new even for the original equation posed by Lazer and Solimini,

u′′(t) =
1

uµ(t)
+ f(t). (4.5)

In [7], it is proved that if f ∈ L
(
R/ωZ; R

)
and µ ≥ 1 (strong force assumption), then

F < 0 is a necessary and sufficient condition for the existence of a positive ω-periodic
solution. Moreover, it is shown with a counterexample that the strong force assumption
cannot be dropped without additional conditions. Later, in [11] the authors proved that
(4.5) with µ < 1 has a positive ω-periodic solution if F < 0 and

f(t) ≥ −
(
π2

ω2µ

) µ
µ+1

(µ+ 1) for a. e. t ∈ [0, ω].

Therefore, a uniform bound from below is required. The importance of Corollary 4.2 in
this context relies in that it provides for the first time a sufficient existence condition for
a truly f ∈ L

(
R/ωZ; R

)
(possibly unbounded). Of course, the main question remains

open.

Open problem 4.1. Let us assume g ∈ L
(
R/ωZ; R+

)
, g 6≡ 0, f ∈ L

(
R/ωZ; R

)
, and

µ > 0. Find a necessary and sufficient condition over f, g for the existence of a positive
solution of problem (0.5), (0.2).
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[8] G. D. Montesinos, V. M. Perez-Garćıa, P. J. Torres, Stabilization of solitons of the
multidimensional nonlinear Schrodinger equation: matter-wave breathers, Physica D
191 (2004), 193-210.

[9] H. N. Pishkenari, M. Behzad, A. Meghdari, Nonlinear dynamic analysis of atomic force
microscopy under deterministic and random excitation, Chaos, Solitons & Fractals, 37,
Iss. 3 (2008), 748-762.
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