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Abstract. This paper is a survey about stable free boundary hypersurfaces, i.e., second
order minima of area under a volume constraint, inside smooth Euclidean domains. We
review analytic, geometric and topological properties of these hypersurfaces, and above all,
we gather the most relevant classification results of stable hypersurfaces in certain convex
domains which are invariant under a large group of isometries. Then, we give a brief
description of our main result in [RRo], where we add to the literature the characterization
of stable hypersurfaces inside solid convex cones. We finish by giving applications of stability
to the partitioning problem inside a convex domain.

Introduction

In this report we review some facts about stable hypersurfaces inside a smooth Euclidean
domain: they are defined as minima, up to second order, of the area functional associated to
any variation inside the domain leaving invariant the volume separated by the hypersurface.

Stability is usually studied by using methods of the Calculus of Variations and geometric
properties of the ambient domain. In Section 1 we recall the first and second variation of area
and volume, in order to give a geometric and analytical description of stable hypersurfaces.
In particular, we deduce the well-known result that any stable hypersurface has constant

mean curvature and meets the boundary of the ambient domain orthogonally. Moreover,
such a hypersurface has associated a quadratic form, called the index form (see (1.3)), with
at most index one over smooth functions defined on the hypersurface.

The fact that the boundary term appearing in the index form is non-negative when the
domain has locally convex boundary suggests that the notion of stability is more restrictive
for convex domains. In fact, by inserting suitable test functions in the index form, we
can deduce interesting geometrical and topological information from the stability condition.
With this idea, we recall in Section 1 some known restrictions on the topology of a stable
hypersurface within a convex domain.

The classification of stable hypersurfaces inside a given domain is a difficult and interesting
global problem in Riemannian Geometry. In Section 2 we gather the most relevant results
related to this question, obtained for certain domains which are invariant under a large
group of Euclidean isometries, such as half-spaces, slabs and round balls. We also give, in
Section 3, a scheme of the proof of a result established jointly with Ritoré [RRo] in which
we characterize stable hypersurfaces inside a solid convex cone: they are round spheres
contained in the closure of the cone, or half-spheres centered and lying over a flat piece of
the boundary of the cone, or spherical caps centered at the vertex. The method we used
to prove this result was introduced by Barbosa and do Carmo [BdC] to show that round
spheres are the only immersed, compact stable hypersurfaces in R

n+1, and was adapted later
by Morgan and Ritoré [MR] to identify bounded stable hypersurfaces with a small singular
set contained in certain cones over compact submanifolds of the unit sphere.
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Section 4 of the paper is devoted to the partitioning problem inside a smooth convex
domain. It consists of finding those hypersurfaces included in the closure of the domain
that globally minimize the area under the restriction of the volume they enclose. The first
questions taken into consideration associated to this problem were related to the existence
and regularity of the solutions, called isoperimetric hypersurfaces. In the light of standard
results in Geometric Measure Theory (see [M], [GMT] and [Gr]), inside a smooth bounded
domain, isoperimetric hypersurfaces exist and they are smooth, up to a closed set of singu-
larities with high Hausdorff codimension. Moreover, when the ambient domain is invariant
under a large group of isometries, the solutions are smooth and bounded. We must remark
that, in spite of the last advances, the complete description of isoperimetric hypersurfaces
in a given domain has been achieved only in a few number of cases.

It is clear that isoperimetric hypersurfaces are also stable. This relation allows us to give,
after a comparison among the areas of the different candidates, the complete solution to the
partitioning problem in half-spaces, slabs, round balls and solid convex cones. The case of
a convex cone requires some additional arguments to prove the existence of isoperimetric
hypersurfaces and to deal with the possible non-empty set of singularities.

The partitioning problem and the study of stable hypersurfaces are object of an intensive
study. A beautiful report on these topics containing recent progress and open questions is
the one by Ros [R2], see also [RR].

1. The stability condition. Geometric and topological consequences

From now on, we denote by D a domain (connected, open set) of R
n+1 with C∞ boundary

∂D. Let Σ ⊂ D be a smooth, compact hypersurface with interior int(Σ) and boundary ∂Σ.
We assume that the following conditions hold

(1) int(Σ) ⊂ D,
(2) ∂Σ ⊂ ∂D,
(3) int(Σ) induces a partition of D into two open sets Ω1 and Ω2 such that ∂Ωi ∩ D = Σ.

We suppose that one of these sets is bounded and we call it Ω.

In the situation above, we denote by vol(Ω) the Lebesgue measure of Ω in R
n+1, and by A(Σ)

the Riemannian measure of Σ induced by the Euclidean metric of R
n+1. It is well-known

that A(Σ) coincides with Hn(Σ) = n-dimensional Hausdorff measure of Σ in R
n+1, so that

we must think of A(Σ) as the “area” of Σ.

In this paper we are interested in those hypersurfaces that locally minimize the area under
the restriction of the volume they enclose. In order to precise this idea we introduce the next
definition

Definition 1.1. A volume preserving variation of Σ in D is a smooth map ϕ : Σ×(−ε, ε) →
D, such that

(i) Σt = ϕ(Σ × {t}) is a smooth hypersurface satisfying (1), (2) and (3),
(ii) Σ0 = Σ,
(iii) vol(Ωt) = vol(Ω) for any t ∈ (−ε, ε), where {Ωt}t is a family of bounded open sets in

D such that ∂Ωt ∩ D = Σt and {χΩt
} → χΩ in L1(D) as t → 0.

Geometrically, a volume preserving variation is a local deformation of Σ in such a way
that the volume enclosed by the hypersurfaces of the deformation remains constant. Note
that we do not impose that the variation leaves invariant the boundary ∂Σ.

Now, we can give the definition of stable hypersurface as was introduced by Barbosa and
do Carmo [BdC], and by Ros and Vergasta [RV].
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Definition 1.2. A hypersurface Σ is stable in D if the area functional A(t) = A(Σt) asso-
ciated to any volume preserving variation of Σ in D satisfies

A′(0) = 0 and A′′(0) > 0.

Remark 1.3. The terminology stable hypersurface is not used consistently in the literature.
In the classical theory of minimal surfaces, a stable hypersurface is a second order minimum
of area for variations preserving the boundary of the hypersurface. As we do not impose
volume preserving variations to fix ∂Σ, our notion of stability in Definition 1.2 is usually
referred to as free boundary stability. In these notes we will only consider this notion of
stability.

Now, we shall use the first and second variation formula for area and volume in order to
give an analytical characterization of stability.

Let ϕ : Σ × (−ε, ε) → D be any variation of Σ in D. We denote by X the vector field
on Σ defined by Xp = d

dt

∣

∣

t=0
ϕ(p, t). Call N to the unit normal vector to Σ pointing into

Ω, and η to the inner normal vector to ∂Σ in Σ. Consider the functions A(t) = A(Σt) and
V (t) = vol(Ωt). It is well-known ([RV]) that

A′(0) = −n

∫

Σ

Hu dHn −

∫

∂Σ

〈X, η〉 dHn−1,(1.1)

V ′(0) = −

∫

Σ

u dHn,(1.2)

where u = 〈X, N〉 and H is the mean curvature of Σ with respect to N (defined as the
arithmetic mean of the principal curvatures). If ∂Σ = ∅ we adopt the convention that the
integrals over this set are all equal to 0. By using (1.1) and (1.2) with appropriate variations
of Σ, one can show that if Σ is stable in D, then H is constant and Σ meets ∂D orthogonally.

When the variation ϕ preserves volume, the derivative A′′(0) is given by ([RS])

(1.3) A′′(0) = Q(u, u) =

∫

Σ

{|∇Σu|2 − |σ|2 u2} dHn −

∫

∂Σ

II(N, N) u2 dHn−1,

where ∇Σu is the gradient of u relative to Σ, |σ|2 is the squared norm of the second fun-
damental form of Σ with respect to N , and II is the second fundamental form of ∂D with
respect to the inner normal vector. The expression (1.3) defines a quadratic form, called the
index form of Σ. We see that it involves not only analytical quantities but also other terms
related to the geometry of Σ and ∂D.

Let u be a smooth mean zero function over Σ. By using the arguments in [BdC, Lemma
2.4] we can construct a volume preserving variation of Σ in D with associated vector field
X = uN . Thus, if Σ is stable, then we get Q(u, u) > 0. We have obtained the following

Proposition 1.4. Let Σ ⊂ D be a smooth compact hypersurface. Then, Σ is stable in D if

and only if

(i) Σ has constant mean curvature with respect to the normal pointing into Ω.

(ii) Σ meets ∂Ω orthogonally.

(iii) The index form defined in (1.3) satisfies Q(u, u) > 0 for any smooth mean zero

function over Σ.

The result above establishes a relation between stable hypersurfaces and the geometric
theory of constant mean curvature hypersurfaces; in fact, the previous arguments show that
constant mean curvature hypersurfaces appear as critical points of area for volume preserving
variations. It follows by the well-known Alexandrov uniqueness theorem that any stable,
embedded hypersurface with empty boundary coincides with a round sphere in R

n+1.
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Inequality Q(u, u) > 0 provides interesting geometrical and topological information when
a suitable function u is inserted. As we shall see, the best test functions are those involving
geometric information about the ambient domain.

Note that the boundary term in the index form (1.3) is non-negative when D is convex.
This indicates us that the notion of stability is more restrictive for convex domains. As a
matter of fact, some topological consequences of stability are deduced in this setting. For
example, we have

Lemma 1.5. Any stable hypersurface Σ inside a convex domain D is connected or flat.

Moreover, if D is strictly convex then Σ is connected.

The proof of Lemma 1.5 is easy. In fact, if there were two different components of Σ,
then we could consider a locally constant nowhere vanishing function u with mean zero
over Σ and such that Q(u, u) < 0 unless |σ|2 and II(N, N) vanish. Geometrically, this
deformation corresponds to contract one component and expand the other one, so that the
volume enclosed is preserved while the area decreases.

The next example illustrates that it is possible to find disconnected stable hypersurfaces
inside a convex domain.

Example. Let D be a solid right cylinder in R
n+1. It is clear that the hypersurface Σ ⊂ D

consisting of two parallel n-dimensional discs meeting ∂D orthogonally is stable since |σ|2 = 0
and II(N, N) = 0.

The following result, due to Sternberg and Zumbrun [SZ], shows that the example above
is essentially the unique situation in which disconnected stable hypersurfaces appear.

Theorem 1.6 ([SZ, Theorem 3.1]). If Σ is a disconnected stable hypersurface inside a convex

domain D, then the part of D lying between any two components of Σ is a right cylinder.

In general, it is difficult to obtain more precise information about the topology of a stable
hypersurface. However, Ros and Vergasta [RV] obtained some restrictions on the genus
and the number of boundary components of a stable surface inside a convex domain of R

3.
Their arguments use the existence of conformal spherical maps on certain compact Riemann
surfaces in order to construct a suitable test function.

Theorem 1.7 ([RV, Theorem 5]). Let Σ be a connected, stable surface with non-empty

boundary inside a convex domain of R
3. Then, the genus g and the number r of boundary

components of Σ satisfy g 6 3 and r 6 3. More precisely, the only possible values for g and

r are

(i) g ∈ {0, 1} and r ∈ {1, 2, 3}.
(ii) g ∈ {2, 3} and r = 1.

In the next section we shall see that under additional assumptions on the convex domain
D we can exactly determine the topology of any stable Σ ⊂ D.

2. Classification of stable hypersurfaces inside smooth convex domains

The complete description of stable hypersurfaces inside a given convex domain is a difficult
and interesting problem in Riemannian Geometry. It has been solved only in some specific
situations, and even the apparently simple case of a round ball in R

n+1 remains open. In
this section we gather the most relevant results in relation to this question.

2.1. The whole space and half-spaces. In 1984, Barbosa and do Carmo obtained the
first classification result of stable hypersurfaces. They proved the following
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Theorem 2.1 ([BdC, Theorem 1.3]). Let Σ be an immersed, compact hypersurface in R
n+1.

If Σ is stable, then Σ is a round sphere.

As any stable hypersurface in R
n+1 has constant mean curvature, the result above trivially

follows from Alexandrov uniqueness theorem when Σ is embedded. In the general case we
cannot appeal to this theorem and stable immersed tori could appear, see [W]. The argument
used by Barbosa and do Carmo consists of inserting in the index form (1.3) the test function
u = 1 + H 〈X, N〉, where H is the mean curvature of Σ with respect to a unit normal vector
field N , and X is the position vector field in R

n+1 given by X(p) = p. It was shown by
Wente [W2] that the function u appears when one considers first a contraction of Σ by
parallel hypersurfaces and then applies a dilation to restore the enclosed volume. As u is
a smooth mean zero function on Σ, the stability condition in Proposition 1.4 (iii) implies
Q(u, u) > 0. An explicit calculation of Q(u, u) shows that inequality Q(u, u) > 0 is equivalent
to |σ|2 = nH2. This means that any stable Σ is a totally umbilical hypersurface of R

n+1.
On the other hand, as Σ is compact with empty boundary, we get by using Lemma 1.5 that
Σ is connected. We conclude that Σ coincides with a round sphere of R

n+1.

Now, let us consider a half-space H of R
n+1 and a stable hypersurface Σ inside H. If

∂Σ = ∅, then Σ must be a round sphere by Theorem 2.1. On the other hand, if ∂Σ 6= ∅, then
we can use again the test function given by Barbosa and do Carmo, or a reflection argument
with respect to ∂H, to deduce

Theorem 2.2. Let Σ be an immersed, compact hypersurface in a half-space H. If Σ is stable,

then Σ is a round sphere contained in H or a half-sphere centered at ∂H.

Figure 1. Stable hypersurfaces in a half-space: spheres and half-spheres.

2.2. Stable hypersurfaces inside a slab. Another interesting situation to consider is
the case of a domain S ⊂ R

n+1 bounded by two parallel hyperplanes. It was first studied
in dimension three by Athanassenas [At], who showed that the only stable surfaces in S
are round spheres, half-spheres centered at one of the planes contained in ∂S, and some
circular cylinders meeting ∂S orthogonally. In higher dimension, the problem was treated
by Pedrosa and Ritoré [PR]. Their first result, obtained as an application of Alexandrov
reflection principle, is the following

Lemma 2.3. Let Σ be a compact, embedded, constant mean curvature hypersurface in a

slab S ⊂ R
n+1 such that Σ meets ∂S orthogonally. Then, Σ is rotationally symmetric with

respect to a line perpendicular to ∂S.

This lemma implies that any stable Σ ⊂ S belongs to the well-known family of constant
mean curvature hypersurfaces of revolution in R

n+1. The complete description of such hy-
persurfaces was given by Delaunay [D] in 1841 (they are depicted in Figure 2). It follows
by the orthogonality condition that Σ must be a half-sphere, or a cylinder about a line
perpendicular to ∂S, or a certain closed piece of an unduloid.

Let Σ be a closed piece of an unduloid meeting ∂S orthogonally. For this hypersurface
Pedrosa and Ritoré [PR, Proposition 3.2] consider a suitable mean zero function depending
on the period of the unduloid, which gives instability of Σ in dimension n 6 7 when it is
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Figure 2. The different possibilities for the generating curve of a hypersur-
face of revolution with constant mean curvature in R

n+1: unduloid, cylinder,
nodoid, sphere, catenoid and hyperplane.

inserted in the index form (1.3). As a consequence they obtain the next result, analogous to
the one by Athanassenas.

Theorem 2.4 ([PR, Corollary 5.4]). Let Σ be a stable, embedded hypersurface in a slab S
of R

n+1, n 6 7. Then, Σ is either

(i) A round sphere contained in S, or

(ii) A half-sphere attached to one of the hyperplanes contained in ∂S, or

(iii) The intersection with the slab of a solid cylinder of suitable radius, whose axis is

perpendicular to ∂S.

Figure 3. Stable hypersurfaces in a slab of R
n+1, n 6 7: spheres, half-

spheres, and cylinders perpendicular to the boundary of the slab.

As it is pointed out in [PR] not all cylinders are stable. Stability depends on the distance
between the two boundary hyperplanes and on the radius of the cylinder.

In higher dimension the previous theorem does not hold. In fact, in [PR, Proposition 5.3]
it is shown that for any n > 9 some stable pieces of unduloid appear. The discussion about
the stability of unduloids remains open in the case n = 8.

Figure 4. Stable pieces of unduloid inside a slab of R
n+1 appear for any n > 9.
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2.3. Stable hypersurfaces inside a round ball. This case was first treated by Nitsche
[N], who showed that the only stable disc-type surfaces inside a ball of R

3 are the totally
geodesic discs and the spherical caps. The problem was also considered by Ros and Vergasta
[RV] in dimension three. More recently, Sternberg and Zumbrun [SZ] have extended to
arbitrary dimension some of the results in [RV].

The main stability result for round balls obtained by Ros and Vergasta is the following

Theorem 2.5 ([RV, Theorem 11]). Let Σ be a stable hypersurface inside a round ball B of

the Euclidean three-space. Then Σ is either

(i) A round sphere contained in B, or

(ii) A spherical cap meeting ∂B orthogonally, or

(iii) A flat disc passing through the center of B, or

(iv) A surface of genus one and at most two boundary components.

Figure 5. Some stable hypersurfaces inside a round ball: spheres, spherical
caps, and flat discs. The complete classification is still an open question.

An example of a constant mean curvature surface Σ ⊂ B of genus one and two boundary
components contained in ∂B is a piece of a catenoid, see Figure 2. In fact, for any H > 0 there
is a piece of an unduloid of mean curvature H meeting ∂B orthogonally. However, Ros [R,
Theorem 4] proved that neither catenoid nor unduloid pieces are stable. His argument uses
the Courant’s nodal domain theorem [Ch] and a test function associated to the infinitesimal
vector field of rotations about a line. As a consequence, we have

Proposition 2.6. Let Σ be a compact, embedded piece of a Delaunay hypersurface inside a

round ball B ⊂ R
n+1 meeting ∂B orthogonally. If Σ is stable, then Σ is either a flat disc or

a spherical cap.

At the present moment not much is known about a stable hypersurface Σ ⊂ B without
the additional assumption of an axis of revolution. The following result provides information
about the sign of the support function u = 〈X, N〉, where X(p) = p−p0 is the position vector
field with respect to the center p0 of the ball, and N is a unit normal vector field along Σ.
Recall that Σ is said to be a graph over ∂B if u does not change sign on Σ.

Theorem 2.7 ([RV, Theorem 8], [SZ, Theorem 3.5]). Let Σ be a stable hypersurface with

∂Σ 6= ∅ inside a round ball B ⊂ R
n+1. Suppose that the area A of Σ and the (n−1)-Hausdorff

measure L of ∂Σ satisfy the relation L > nA. Then, Σ is a graph over ∂B.

The proof is based on this reasoning: if there were two domains Σ+ and Σ− of Σ where
u is signed, then we could construct a non-trivial mean zero function v on Σ such that
Q(v, v) < 0, a contradiction with the stability condition in Proposition 1.4 (iii).

3. Stable hypersurfaces inside solid convex cones

In this section we give a brief description of a result obtained jointly with Ritoré in [RRo],
where we classify stable hypersurfaces in a solid convex cone. The presence of a singular
point at the vertex of the cone leads us to consider hypersurfaces with a possible non-empty
set of singularities. Let us precise the situation.



8 C. ROSALES

We denote by C a solid cone of R
n+1, that is, a set of the form {tν : t > 0, ν ∈ U}, for

some domain U with smooth non-empty boundary of the sphere S
n. The cone C is open,

unbounded, and has a singularity at the vertex unless it coincides with a half-space. We
remark that we allow a hypersurface Σ ⊂ C to contain the vertex of the cone. Under these
conditions we have proved

Theorem 3.1 ([RRo, Theorem 4.9]). Let Σ be a stable hypersurface inside a solid convex

cone C of R
n+1 (n > 2). Then Σ is either

(i) A round sphere contained in C, or

(ii) A half-sphere centered and lying over a flat piece of ∂C, or

(iii) A spherical cap centered at the vertex of the cone.

Figure 6. Stable hypersurfaces in a convex cone: spheres, half-spheres and
spherical caps centered at the vertex.

Proof. We will only give a sketch of the proof. Call N to the unit normal vector along Σ
pointing into the enclosed domain Ω. In order to use the stability condition we must construct
an appropriate volume preserving variation of Σ inside the cone. We follow the same idea
employed by Barbosa and do Carmo in Theorem 2.1. For any t in a small neighborhood of
the origin, we take the parallel to Σ at distance t in the direction of the normal vector N .
Then, as the cone is invariant under dilations centered at the vertex, we can apply a dilation
of ratio s(t) to restore the enclosed volume without leaving the cone. This procedure gives
a volume preserving variation {Σt}t of Σ inside C. The normal component of this variation
coincides with the function u = 1 + H 〈X, N〉 introduced by Barbosa and do Carmo. When
u is inserted in the index form (1.3), the stability condition reads Q(u, u) > 0, which implies,
after some computations, that |σ|2 = nH2 on Σ and II(N, N) = 0 on ∂Σ\{0}. In particular,
Σ is a totally umbilical hypersurface. On the other hand, by using the first Minkowski
formula for cones, see [RRo, (4.8)], we deduce that H > 0 and so, each component of Σ is a
piece of a sphere. Moreover, Σ is connected by Lemma 1.5. The proof finishes by invoking
Lemma 3.2 below. �

Lemma 3.2 ([RRo, Lemma 4.10]). Let C ⊂ R
n+1 be a convex cone and Σ ⊂ C a connected

piece of a round sphere such that ∂Σ ⊂ ∂C and Σ meets ∂C \ {0} orthogonally. Then,

Σ is either a round sphere contained in C, or a spherical cap centered at the vertex, or a

half-sphere lying over a flat piece of ∂C.

Remark 3.3. By using an approximation argument [RRo, Lemma 4.3] we can show that
Theorem 3.1 is also valid if we allow the presence in Σ of a closed singular set Σ0 which is
negligible, in the sense that Hn−2(Σ0) = 0 (here, Hn−2 is the (n− 2)-dimensional Hausdorff
measure in R

n+1). This argument also holds for the whole space R
n+1 and for a half-space

H ⊂ R
n+1; as a consequence, we can extend Theorem 2.1 and Theorem 2.2 to hypersurfaces

with small singular sets.
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4. Applications to the partitioning problem

In this section we will show how to use the stability condition to study the partitioning

problem inside a convex domain D ⊆ R
n+1. This problem consists of finding those hyper-

surfaces separating a given amount of volume inside D with the least possible area. More
precisely

Definition 4.1. Let Σ ⊂ D be a smooth hypersurface separating a bounded set Ω ⊂ D. We
say that Σ is an isoperimetric hypersurface enclosing volume V < vol(D) if vol(Ω) = V and

A(Σ) 6 A(Σ′)

for all hypersurfaces Σ′ ⊂ D such that vol(Ω′) = V .

It is clear that any isoperimetric hypersurface is also stable. Along this section we will
give many examples showing that the reverse statement is not true in general. The relation
between stability and isoperimetry implies that stable hypersurfaces are natural candidates
to solve the partitioning problem.

Suppose that D is a smooth domain where the existence of isoperimetric hypersurfaces
enclosing any given volumen is ensured. If stable hypersurfaces in D are classified, then we
only have to compare the area of the different stable candidates for fixed volume in order to
find the best ones. We shall apply this scheme to describe isoperimetric hypersurfaces for
the cases treated in Section 2 and Section 3.

Usually, a difficult step in the scheme above is to prove the existence and the regularity
of isoperimetric hypersurfaces in D. By standard results in Geometric Measure Theory [M],
isoperimetric hypersurfaces exist in some situations: for example, when D is bounded or
invariant under the action of a large group of Euclidean isometries. Moreover, the singular set
Σ0 ⊂ Σ is closed in R

n+1 and satisfies Hn−2(Σ0) = 0, where Hn−2 is the (n− 2)-dimensional
Hausdorff measure in R

n+1. Sometimes it is possible to show that the singular set Σ0 is
empty. Otherwise, we can use approximation arguments to deal with the singularities, see
[SZ2, Lemma 2.4] and [RRo, Lemma 4.3].

We begin by considering the case D = R
n+1. The results alluded to above provide

existence and regularity of isoperimetric hypersurfaces in R
n+1 enclosing any given volume.

Moreover, they are also bounded and connected. Therefore, by using Theorem 2.1 we obtain
the classical isoperimetric property of spheres in R

n+1

Theorem 4.2. Isoperimetric hypersurfaces in R
n+1 are round spheres.

We can use similar arguments and Theorem 2.2 to deduce that the only candidates to
solve the partitioning problem in a half-space of R

n+1 are round spheres and half-spheres
centered at the boundary of the half-space. An easy comparison of areas shows

Theorem 4.3. Isoperimetric hypersurfaces in a Euclidean half-space are half-spheres cen-

tered at the boundary of the half-space.

Now, we consider a slab S in R
n+1. By taking into account that S is invariant under

translations parallel to ∂S and rotations about any line orthogonal to ∂S, we can establish
existence and regularity of isoperimetric hypersurfaces for any given volume. In this case,
the family of stable candidates is bigger, see Theorem 2.4. However, after a comparison
between the areas, it is obtained

Theorem 4.4 ([PR, Thm. 3.5]). Isoperimetric hypersurfaces in a slab of R
n+1, n 6 7 are

(i) Half-spheres centered at one of the boundary hyperplanes, or

(ii) Certain tubes around a line orthogonal to the boundary of the slab.
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This result illustrates that the topology of isoperimetric hypersurfaces changes for certain
values of volume. For any n > 9 it was shown in [PR, Proposition 3.4] that there are
isoperimetric hypersurfaces in S of unduloid type. The argument is the following: for n > 9
a half-sphere centered at one component of ∂S and meeting tangentially the other one
cannot be isoperimetric by regularity but has strictly less area than a tube enclosing the
same volume. Hence, there is an isoperimetric hypersurface which is neither a half-sphere
nor a tube. The only possibility is that the hypersurface is of unduloid type. The solution
to the partitioning problem for n = 8 is still an open question.

Now, let us consider a round ball B of R
n+1. As B is bounded, the existence of isoperime-

tric solutions is guaranteed. The natural candidates to solve the partitioning problem pro-
vided by Theorem 2.5 are round spheres included in B, flat n-dimensional discs passing
through the center of B, and spherical caps meeting ∂B orthogonally. At first, some other
candidates could appear since the classification of stable hypersurfaces in a ball is not com-
plete. However, we can discard them by using spherical symmetrization [BZ, p. 78] and
Proposition 2.6.

Spherical symmetrization about a line R assigns to any set A ⊂ R
n+1 another set S(A) in

this way: for any S in a family of concentric spheres centered at R, we replace the intersection
A∩S by the spherical cap centered at one point in S∩R of the same area. This construction
has the property of preserving the volume of A while the boundary area strictly decreases
unless A were of revolution about a line parallel to R, and the sections A ∩ S were all
connected. By applying this procedure we see that any isoperimetric hypersurface Σ inside
a ball is rotationally symmetric with respect to a line passing through the center of the ball.
By invoking Proposition 2.6 we deduce that Σ coincides with one of the natural candidates
mentioned above. An easy comparison of areas finally gives

Theorem 4.5 ([BS], [A]). Isoperimetric hypersurfaces in a ball B ⊂ R
n+1 are

(i) Flat n-dimensional discs containing the center of the ball, or

(ii) Spherical caps meeting ∂B orthogonally.

Finally we treat the case of a cone C ⊂ R
n+1 different from a half-space. For solid

cones, we cannot apply general existence results in Geometric Measure Theory since they
are neither bounded nor invariant under a large group of isometries. This leads us to study
the question of existence in more detail. By using that the dilations centered at the vertex
are diffeomorphisms of the cone, we proved in [RRo] some criteria ensuring existence of
isoperimetric hypersurfaces.

Theorem 4.6 ([RRo, Propositions 3.5 and 3.6]). Let C ⊂ R
n+1 be a solid cone over a

smooth domain U ⊂ S
n. Suppose that C satisfies one of the following conditions

(i) C admits a local support hyperplane at a point p ∈ ∂C \ {0}.
(ii) Hn(U) 6 Hn(Sn)/2.

Then, there are bounded isoperimetric hypersurfaces in C for any given volume.

Admit that the cone C is convex. Let Σ be an isoperimetric hypersurface in C (which
exists by Theorem 4.6). At first, a singular set Σ0 ⊂ Σ consisting of isolated points or
satisfying Hn−2(Σ0) = 0 could appear. However, as we pointed out in Remark 3.3, our
classification of stable hypersurfaces in Theorem 3.1 is also valid in this situation. It turns
out that Σ is either a round sphere inside C, or a half-sphere lying over a flat piece of ∂C, or
a spherical cap centered at the vertex of C. A comparison between the areas of the different
candidates finally gives us

Theorem 4.7 ([LP], [RRo]). Isoperimetric hypersurfaces in a solid convex cone are sphe-

rical caps centered at the vertex of the cone.
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Figure 7. Isoperimetric hypersurfaces in a solid convex cone.

Theorem 4.7 was previously proved by Lions and Pacella [LP] by using the Brunn-
Minkowski inequality in R

n+1. The complete solution to the partitioning problem inside
a convex cone over a non-smooth spherical domain remains open. Another interesting ques-
tion to study is the next one

Problem. Consider the Clifford torus T ⊂ S
3

T = {(x, y, z, t) ∈ R
4 : x2 + y2 = z2 + t2 = 1/2}.

S
3 \T is the union of two domains Uk, which are isometric via the antipodal map and satisfy

H3(U1) = H3(U2) = H3(S3)/2. Hence, if C is the cone over U1 we know by Theorem 4.6
that there exist isoperimetric hypersurfaces in C for any volume. However, in this case we
cannot apply Theorem 3.1 since the cone C is non-convex (in fact, at any point of ∂C \ {0}
there always are two principal curvatures with opposite values).
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[MR] Frank Morgan and Manuel Ritoré, Isoperimetric regions in cones, Trans. Amer. Math. Soc. 354

(2002), no. 6, 2327–2339 (electronic).
[N] J. C. C. Nitsche, Stationary partition of convex bodies, Arch. Rational Mech. Anal. 89 (1985), 1–19.
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