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Abstract. We study stable surfaces, i.e., second order minima of the area for variations of fixed

volume, in sub-Riemannian space forms of dimension 3. We prove a stability inequality and pro-

vide sufficient conditions ensuring instability of volume-preserving area-stationary C2 surfaces
with a non-empty singular set of curves. Combined with previous results, this allows to describe

any complete, orientable, embedded and stable C2 surface Σ in the Heisenberg group H1 and

the sub-Riemannian sphere S3 of constant curvature 1. In H1 we conclude that Σ is a Euclidean
plane, a Pansu sphere or congruent to the hyperbolic paraboloid t = xy. In S3 we deduce that Σ

is one of the Pansu spherical surfaces discovered in [28]. As a consequence, such spheres are the

unique C2 solutions to the sub-Riemannian isoperimetric problem in S3.

1. Introduction

The main motivation of this work is to study the isoperimetric problem, where we seek sets
minimizing the perimeter under a volume constraint, in sub-Riemannian spaces. This is a global
variational question that has received several contributions in the last years, especially in the
Heisenberg group Hn, which is the simplest model of a non-trivial sub-Riemannian manifold. It
was conjectured by Pansu [37] that the isoperimetric regions in H1 are bounded, up to congruence,
by certain spherical C2 surfaces with rotational symmetry and constant mean curvature in sub-
Riemannian sense. This conjecture is supported by many partial results where further hypotheses
involving regularity or symmetry of the solutions are assumed, see [7, Ch. 8] and the Introduction
of [41] for a precise description. Other related works are due to Monti [34], who has analyzed sym-
metrization in Hn, Cheng, Chiu, Hwang and Yang [9], who have characterized the Pansu spheres
in Hn by using a notion of umbilicity, and Montefalcone [33], who has derived some properties of
the Pansu spheres as second order minima of the area under a volume constraint.

Besides the Heisenberg group H1, which is the model by excellence of a simply connected flat
sub-Riemannian 3-manifold, it is also natural to investigate the isoperimetric problem in other 3-
dimensional space forms, i.e., complete Sasakian sub-Riemannian 3-manifolds of constant Webster
curvature, see Section 2.1. In the simply connected case, a result of Tanno [45] implies that, up
to an isometry and a homothetic deformation of the sub-Riemannian metric, the unique 3-space
form of Webster curvature κ is the model manifold M(κ) defined as the Heisenberg group H1 when
κ = 0, the group of unit quaternions S3 ⊂ R4 when κ = 1, and the universal cover of the special
linear group SL(2,R) when κ = −1. The spaces M(κ) are also the most symmetric examples of
3-space forms; indeed, any simply connected and homogeneous contact sub-Riemannian 3-manifold
with isometry group of dimension 4 is isometric to a model M(κ), see [17].
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Isoperimetric inequalities were discovered by Pansu [36] in M(0), and by Chanillo and Yang [8]
in M(1) by means of a sub-Riemannian Santaló formula, see also the recent work of Prandi, Rizzi
and Seri [39]. The existence of isoperimetric regions in M(κ) is consequence of more general re-
sults by Leonardi and Rigot [31] for Carnot groups, and by Galli and Ritoré [22] for homogeneous
manifolds. The regularity of the solutions is a difficult open problem, even in the Heisenberg group
M(0). As a matter of fact, though the conjectured solutions are bounded by C2 surfaces, there
exist area-minimizing surfaces in M(0) with much less regularity, see [38], [13], [35] and [40].

In [28, 29] we constructed Pansu spherical surfaces in arbitrary 3-space forms as union of Carnot-
Carathéodory geodesics (CC-geodesics) connecting two given points. Motivated by some geometric
and variational properties of these spheres we were naturally led to extend Pansu’s conjecture to
the model spaces M(κ). In this direction, it was shown in [43] and [29] that, in M(κ) with κ 6 0,
any C2 isoperimetric region is bounded by a Pansu sphere. The proof was based on a careful study
of C2 volume-preserving area-stationary surfaces, which are the first order candidates to solve the
isoperimetric problem. The main tools employed in this study are contained in Theorem 2.2, which
gathers the ruling property of constant mean curvature surfaces, the structure of the singular set
consisting of the points where the surface is tangent to the horizontal plane, and the orthogonality
property between the rulings and the singular curves. These allow to characterize any complete,
oriented, volume-preserving area-stationary C2 surface Σ with non-empty singular set Σ0 in any
3-space form M . More precisely, it was proved in [43], [28] and [29] that Σ is either a Pansu
sphere, an immersed plane with an isolated singular point, or a surface Cλ(Γ) obtained by leaving
orthogonally from a complete CC-geodesic Γ in M by CC-geodesics of curvature λ, see Section 3.2
for a detailed description. A culminating consequence is a sub-Riemannian version of Alexandrov’s
uniqueness theorem stating that a compact and connected volume-preserving area-stationary C2

surface in M(κ) with κ 6 0 is a Pansu sphere. We must remark that in M(1) the same theorem
holds when we further assume that the surface is within an open hemisphere [29].

Indeed, in the sub-Riemannian 3-sphere M(1) the situation is very different and the classification
of the C2 isoperimetric surfaces does not follow only from the analysis of the critical ones. The
difficulty here is that the family F of compact and connected volume-preserving area-stationary
C2 surfaces in M(1) is considerably larger than in the other model spaces. In order to place the
results of this paper in a suitable context we need to recall some facts about the surfaces in F .
From the work of Cheng, Hwang, Malchiodi and Yang [11] any Σ ∈ F is topologically a sphere or
a torus. When Σ0 6= ∅ the aforementioned works imply that Σ is a Pansu sphere or a torus Cλ(Γ).
In the case Σ0 = ∅ the surface is a torus and there are only partial classification results [28]. For
instance, if the Hopf vector field in S3 is always tangent to Σ, or the mean curvature H of Σ satisfies

H/
√

1 +H2 ∈ R−Q, then Σ is congruent to a vertical Clifford torus Tρ := S1(ρ) × S1(
√

1− ρ2)
with ρ ∈ (0, 1). After the characterization of constant mean curvature tori having rotational sym-
metry [28] or containing a vertical circle [30] the authors found embedded examples that are not
congruent to Tρ. At summarizing, the family F contains Pansu spheres, surfaces Cλ(Γ), and an
undetermined (possibly large) subfamily of constant mean curvature tori with empty singular set.

With the aim of discarding some surfaces in F as boundaries of isoperimetric regions in M(1), we
are led to consider the stability condition, which means that the surface is a second order minimum
of the area under deformations with fixed volume. There are many previous results concerning
stable surfaces in F . On the one hand, the second author established in [44] that any Σ ∈ F with
Σ0 = ∅ is unstable. On the other hand, the authors analyzed in [29] the stability properties of the
Pansu spheres in any 3-dimensional space form by proving, in particular, that they are all second
order minima of the area for a large class of volume-preserving variations. As to the surfaces Cλ(Γ),
they satisfy a strong stability condition under (possibly non-volume preserving) deformations sup-
ported on the regular set [30]. Hence, to complete the study of stable surfaces in F , it remains
to check if Cλ(Γ) is stable for volume-preserving variations that possibly move the singular curves.
Indeed, the main contribution of the present work is to find a variation of this type to produce the
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instability of Cλ(Γ). This is not an easy task because Cλ(Γ) need not be compact, see examples
in [43] and [28], and the presence of the singular curves entails technical issues to compute the
second derivative of the area. Since we are interested in surfaces bounding isoperimetric regions
we will restrict ourselves to the case where Cλ(Γ) is also embedded. In this situation, our result in
M(1) comes from a more general instability criterion for arbitrary 3-dimensional space forms. More
precisely, in Theorem 5.1 we show the following:

In a 3-dimensional space form M of Webster curvature κ, an embedded C2 surface
Cλ(Γ) such that λ2 + κ > 1 and the length ` of Γ satisfies ` >

√
2π is unstable.

In the model space M(1) the length estimate ` >
√

2π holds for any CC-geodesic circle Γ by using
the explicit expression of the CC-geodesics, see [28] and also [29, Prop. 2.5]. Thus, by combining
our instability criterion with the previous results, we deduce in Corollary 5.4 that:

The only complete, connected, oriented, embedded and stable C2 surfaces in the
sub-Riemannian 3-sphere are the Pansu spheres.

In the Heisenberg group M(0) the instability criterion together with the existence of a one-parameter
group of non-isotropic dilations implies the instability of all the embedded surfaces Cλ(Γ) when
λ 6= 0. As to the surfaces C0(Γ), there are two possibilities. When Γ is a helix then C0(Γ) is a
left-handed minimal helicoid, and we can adapt the proof in [27, Thm. 5.4] to conclude that C0(Γ)
is unstable. If Γ is a horizontal line, then C0(Γ) is congruent to the t-graph t = xy, which is area-
mininizing by a calibration argument, see [43] and [4]. Moreover, a complete stable C2 surface with
empty singular set in M(0) must be a vertical plane [44]. As a consequence of all this, we obtain in
Corollary 5.5 the following classification result:

The only complete, connected, oriented, embedded and stable C2 surfaces in the first
Heisenberg group are Euclidean planes, Pansu spheres, or surfaces C0(Γ) where Γ
is a horizontal line.

We must remark that the characterization in M(0) of C2 second order minima of the area without
a volume constraint was achieved in [27], see also [15]. In this direction, Galli and Ritoré [23] have
established the uniqueness of the vertical planes as complete stable area-stationary C1 surfaces with
empty singular set in M(0).

The main tool for proving Theorem 5.1 is a stability inequality Q(u) > 0, that we derive in
Theorem 4.6 for constant mean curvature surfaces with singular curves inside arbitrary Sasakian
sub-Riemannian 3-manifolds. The expression of Q(u) in equation (4.6) defines a quadratic form,
which involves analytic and geometric terms not only over the surface but also along the singular
curves. In this way, we provide an extension of the inequality that Ritoré and the authors employed
in [27] to infer the instability of the left-handed minimal helicoids as area-stationary surfaces in
M(0). A similar inequality was used by Galli [19, 20] in his analysis of stable area-stationary surfaces
in the roto-translation group and in the space of rigid motions of the Minkowski plane.

Though the proof of Theorem 4.6 is inspired in the previous one in M(0), some technical diffi-
culties arise due to the volume-preserving condition in the stability notion, and the fact that the
mean curvature need not vanish. Given a stable surface Σ, we construct in a first step a volume-
preserving variation of Σ with a prescribed velocity vector field. This is done with the help of
Lemma 4.5, which is based on a result of Barbosa and do Carmo [2] for normal deformations of
a Euclidean surface. The variation ϕ in this lemma moves a neighborhood of the singular curves
by vertical Riemannian geodesics, and the complementary set by a more complicated deformation,
possibly with non-vanishing acceleration vector field. This is a remarkable difference with respect
to previous works, where all the considered variations were based on Riemannian geodesics. Next,
in order to use the stability of Σ, we must compute the second derivative of the area A′′(0) for the
variation ϕ. The calculus of A′′(0) off the singular curves is accomplished in Proposition 4.1 by
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means of a more general second variation formula in [29]. For vertical deformations near the sin-
gular curves with vertical component constant along the rulings, the calculus of A′′(0) is contained
in Proposition 4.4. It is worth mentioning that the obtention of both A′′(0) and the inequality
Q(u) > 0 requires a careful study of Σ near the singular curves which is developed in Section 3.1.

From the stability inequality, the proof of Theorem 5.1 relies on the delicate task of finding a
mean zero function u such that Q(u) < 0. From the geometric point of view, our test function is a
suitable modification of the vertical component

〈
N,T

〉
of the unit normal N over the surface. The

choice of such a function is motivated by the fact, proved in [30], that
〈
N,T

〉
is a mean zero eigen-

function for the Jacobi operator on Cλ(Γ) that attains its extreme values along the singular curves.
The embeddedness of Cλ(Γ) allows us to define u in the coordinates (ε, s) which parameterize the
different pieces of Cλ(Γ). We remark that u 6= 0 along two singular curves, so that the associated
volume-preserving variation moves these curves. In the case where Γ is a circle, the hypothesis
` >
√

2π is combined with the classical Wirtinger’s inequality to guarantee that Q(u) < 0. Though
the optimality of this hypothesis is not clear for us, in Example 6.3 we show that some kind of
length estimate is necessary to deduce the instability of Cλ(Γ).

Coming back to our original motivation, in Section 6 we discuss the isoperimetric problem in
M(1). In Corollary 6.1 we prove that:

Any C2 isoperimetric regions in the 3-sphere M(1) is bounded by a Pansu sphere.

This statement is a direct consequence of the classification of stable surfaces and a standard argu-
ment which implies the connectivity of isoperimetric boundaries. Hence, under C2 regularity, the
extended Pansu’s conjecture is true in all the model spaces M(κ). In spite of some advances about
the critical points of the sub-Riemannian area with regularity less than C2, see the references at
the end of Section 2.4, it is unknown if the conjecture holds for C1 isoperimetric regions.

In non-simply connected 3-space forms the extended conjecture fails, as the authors discovered in
[29] a flat cylinder where the Pansu spheres do not always minimize the perimeter for fixed volume.
This led us to conjecture that the isoperimetric property of these spheres must hold only for a
range of volumes. To finish this work, we analyze the isoperimetric problem in the sub-Riemannian
model RP3 of the 3-dimensional projective space. In this space, there are solutions of any volume
by compactness. In Corollary 6.2 we obtain that any C2 isoperimetric region in RP3 is bounded by
a Pansu sphere or an embedded torus Cλ(Γ), where Γ is a CC-geodesic circle. Moreover, a direct
comparison shows that some Pansu spheres do not minimize.

The paper is organized into six sections. In Section 2 we introduce the notation and gather some
preliminary results. In Section 3 we study volume-preserving area-stationary C2 surfaces with
singular curves. Section 4 is devoted to the second variational formulas for deformations moving
the singular curves and the proof of the stability inequality. In the fifth section we establish the
instability criterion for the surfaces Cλ(Γ) and deduce the classification of complete, embedded and
stable C2 surfaces in M(κ) with κ > 0. We conclude in Section 6 with our uniqueness results for
isoperimetric regions in M(1) and RP3.

2. Preliminaries

In this section we introduce some background material that will be used throughout the paper.
This has been organized into several subsections.

2.1. Sasakian sub-Riemannian 3-manifolds.

A contact sub-Riemannian 3-manifold is a connected 3-manifold M with ∂M = ∅ together with
a Riemannian metric gh defined on an oriented contact distribution H, that is called horizontal
distribution. A vector field U is horizontal if Up ∈ Hp for any point p in the domain of U .
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The normalized form in M is the contact 1-form η on M such that Ker(η) = H and the restric-
tion of the 2-form dη to H equals the area form in H. Clearly M is an orientable manifold: we will
always consider the orientation associated to the 3-form η ∧ dη. The Reeb vector field in M is the
vector field T transversal to H given by equalities η(T ) = 1 and dη(T,U) = 0, for any U .

In the oriented planar distribution H with the Riemannian metric gh there is an orientation-
preserving 90 degree rotation that we denote by J . This is a contact structure on H since J2 = −Id.
We extend J to the whole tangent bundle of M by setting J(T ) := 0.

The canonical extension of gh is the Riemannian metric g =
〈
· , ·
〉

on M such that

g(U, V ) = gh(U, V ), g(T,U) = 0, g(T, T ) = 1,

for any two horizontal vector fields U and V . The norm of a vector field U is |U | :=
〈
U,U

〉1/2
. We

say that M is complete if (M, g) is a complete Riemannian manifold.

An isometry between contact sub-Riemannian 3-manifolds M and M ′ is a C∞ diffeomorphism
φ : M →M ′ whose differential at any p ∈M is an orientation-preserving linear isometry from Hp
to H′φ(p). Two sets Σ1,Σ2 ⊆M are congruent if there is an isometry of M such that φ(Σ1) = Σ2.

A contact sub-Riemannian 3-manifold M where any diffeomorphism of the one-parameter group
of T is an isometry is a Sasakian sub-Riemannian 3-manifold. This is equivalent to that (M, g) is
a K-contact Riemannian manifold [6, Cor. 6.3, Cor. 6.5]. Hence, for any vector field U we have
DUT = J(U), see [6, Lem. 6.2], where D is the Levi-Civita connection in (M, g). Moreover, equality

(2.1) DU (J(V )) = J(DUV ) +
〈
V, T

〉
U −

〈
U, V

〉
T

holds for any pair U, V of vector fields.

The Webster (scalar) curvature of a contact sub-Riemannian 3-manifold M is the sectional cur-
vature K of the horizontal distribution H with respect to the Tanaka connection. For Sasakian
manifolds this is related to the sectional curvature Kh of H in (M, g) by means of the equality
K = (1/4) (Kh + 3), see [6, Sect. 10.4].

By a 3-dimensional space form we mean a complete Sasakian sub-Riemannian 3-manifold M
of constant Webster curvature κ. If M is simply connected and κ ∈ {−1, 0, 1}, then a result of
Tanno [45] implies that M is isometric to a model space M(κ). The space M(κ) is the first Heisen-
berg group H1 for κ = 0, the group of unit quaternions S3 ⊂ R4 for κ = 1, and the universal cover
of the special linear group SL(2,R) for κ = −1. We refer the reader to [44, Sect. 2.2] and [29,
Sect. 2.2] for precise descriptions of M(κ) and other non-simply connected space forms.

2.2. Carnot-Carathéodory geodesics and Jacobi fields.

A horizontal curve in a Sasakian sub-Riemannian 3-manifold M is a C1 curve γ : I →M , defined
on an interval I ⊆ R, and with horizontal velocity vector γ̇. The length of γ in a compact interval

[a, b] ⊆ I is
∫ b
a
|γ̇(s)| ds. Following the approach in [43, Sect. 3] and [44, Sect. 3], we say that a C2

horizontal curve γ parameterized by arc-length is a CC-geodesic if it is a critical point of length
under C2 variations by horizontal curves. As in [43, Prop. 3.1] this is equivalent to the existence of
a constant λ ∈ R, called the curvature of γ, such that the second order ODE

(2.2) γ̇′ + 2λJ(γ̇) = 0

is satisfied. Here the prime ′ denotes the covariant derivative along γ in (M, g). It follows that any
CC-geodesic in M is a C∞ curve. If p ∈ M and w ∈ Hp with |w| = 1, then the unique maximal
solution γ to the geodesic equation (2.2) with γ(0) = p and γ̇(0) = w is a CC-geodesic of curvature
λ since

〈
γ̇, T

〉
and |γ̇|2 are constant functions along γ. It is known that, if M is complete, then any

maximal CC-geodesic in M is defined on R, see for instance [5, Thm. 1.2].



6 A. HURTADO AND C. ROSALES

As in Riemannian geometry, the notion of CC-Jacobi field appears when one considers the vari-
ational vector field associated to a one-parameter family of CC-geodesics of the same curvature, see
[43, Lem. 3.5] and [44, Lem. 3.3]. In the next result, which follows from [44, Lem. 3.3, Lem. 3.4],
we gather some facts about CC-Jacobi fields that will be useful in this work.

Lemma 2.1. Let M be a Sasakian sub-Riemannian 3-manifold. Consider a C1 curve Γ : I → M
defined on some open interval I ⊆ R, and a unit horizontal C1 vector field U along Γ. For a
fixed λ ∈ R, suppose that we have a well-defined map F : I × I ′ → M given by F (ε, s) := γε(s),
where I ′ is an open interval containing 0, and γε(s) is the CC-geodesic of curvature λ in M with
γε(0) = Γ(ε) and γ̇ε(0) = U(ε). Then, the CC-Jacobi vector field Xε(s) := (∂F/∂ε)(ε, s) and the
function vε(s) :=

〈
Xε(s), T

〉
satisfy these properties:

(i) Xε is C∞ along γε with [γ̇ε, Xε] = 0,
(ii) the expression of Xε with respect to the orthonormal basis {γ̇ε, J(γ̇ε), T} is

Xε =
{
λ
(〈

Γ̇(ε), T
〉
− vε

)
+
〈
Γ̇(ε), U(ε)

〉}
γ̇ε + (v′ε/2) J(γ̇ε) + vε T,

where the prime ′ stands for the derivative with respect to s,
(iii) the function vε satisfies the differential equation v′′′ε + τ v′ε = 0, where τ := 4 (λ2 +K). In

particular, if K is constant and τ > 0, then we have:

vε(s) =
1√
τ

(
aε sin(

√
τ s)− bε cos(

√
τ s)
)

+ cε,

where aε = v′ε(0), bε = (1/
√
τ) v′′ε (0) and cε = vε(0) + (1/τ) v′′ε (0).

2.3. Horizontal geometry of surfaces.

Let M be a Sasakian sub-Riemannian 3-manifold and Σ a C1 surface immersed in M . Unless
explicitly stated we always assume that ∂Σ = ∅. We say that Σ is complete if it is complete with
respect to the Riemannian metric induced by g.

The singular set of Σ is the set Σ0 of the points p ∈ Σ where the tangent plane TpΣ equals the
horizontal plane Hp. Since a contact distribution is completely nonintegrable, it follows by Frobe-
nius theorem that Σ0 is closed and has empty interior in Σ. Hence the regular set Σ− Σ0 is open
and dense in Σ. From the arguments in [16, Lem. 1], see also [1, Thm. 1.2] and [26, App. A], the
Hausdorff dimension of Σ0 in (M, g) is less than or equal to 1 for any C2 surface Σ. In particular,
the Riemannian area of Σ0 vanishes.

If Σ is orientable and we choose a unit vector field N normal to Σ in (M, g), then we have
Σ0 = {p ∈ Σ ;Nh(p) = 0}, where Nh denotes the horizontal projection of N . Thus, in the regular
set Σ− Σ0, we can define the horizontal Gauss map νh and the characteristic vector field Z by

(2.3) νh :=
Nh
|Nh|

, Z := J(νh).

As Z is horizontal and orthogonal to νh then Z is tangent to Σ. Hence Zp generates TpΣ ∩Hp for
any p ∈ Σ−Σ0. We call (oriented ) characteristic curves of Σ to the integral curves of Z in Σ−Σ0.
These curves are tangent to Σ and horizontal. If we define

(2.4) S :=
〈
N,T

〉
νh − |Nh|T,

then {Zp, Sp} is an orthonormal basis of TpΣ whenever p ∈ Σ− Σ0. Hence, we deduce that

(2.5) ν>h =
〈
N,T

〉
S, T> = −|Nh|S,

on Σ− Σ0, where U> stands for the projection of a vector field U onto the tangent plane to Σ.
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Suppose now that Σ is an orientable C2 surface immersed in M . For p ∈ Σ−Σ0 and U ∈ TpM ,
these equalities are easy to prove, see [27, Lem. 3.5] for the details

U(
〈
N,T

〉
) =

〈
DUN,T

〉
+
〈
N, J(U)

〉
, U (|Nh|) =

〈
DUN, νh

〉
+
〈
N,T

〉 〈
U,Z

〉
,(2.6)

DUνh = |Nh|−1
(〈
DUN,Z

〉
−
〈
N,T

〉 〈
U, νh

〉)
Z +

〈
U,Z

〉
T.(2.7)

The shape operator B of Σ in (M, g) is given by B(U) := −DUN , for any vector U tangent to Σ.
As in [43] and [44] we define the (sub-Riemannian) mean curvature of Σ by equality

(2.8) − 2H(p) := (divΣ νh)(p), p ∈ Σ− Σ0,

where divΣ U is the divergence relative to Σ in (M, g) of a C1 vector field U on Σ. The next
formulas involving the mean curvature and the shape operator will be frequently used in this work:〈

B(Z), Z
〉

= 2H |Nh|,(2.9)

Z(
〈
N,T

〉
) = |Nh|

(〈
B(Z), S

〉
− 1
)
, Z(|Nh|) =

〈
N,T

〉 (
1−

〈
B(Z), S

〉)
,(2.10)

S(
〈
N,T

〉
) = |Nh|

〈
B(S), S

〉
, S(|Nh|) = −

〈
N,T

〉 〈
B(S), S

〉
,(2.11)

divΣ Z = |Nh|−1
〈
N,T

〉 (
1 +

〈
B(Z), S

〉)
, divΣ S = −2H

〈
N,T

〉
.(2.12)

The equalities in (2.10) and (2.11) follow from (2.6) and (2.5). Those in (2.12) come from [44,
Lem. 5.5]. On the other hand, equation (2.7) implies that DZνh = T − |Nh|−1

〈
B(Z), Z

〉
Z and

that DSνh is proportional to Z. Hence (2.9) is obtained from (2.8) when we compute the divergence
divΣ νh by using the orthonormal basis {Z, S}.

2.4. Volume-preserving area-stationary surfaces.

Let M be a Sasakian sub-Riemannian 3-manifold and ϕ0 : Σ → M an oriented C2 surface
immersed in M . Following [43] and [44], we define the (sub-Riemannian) area of Σ by

A(Σ) :=

∫
Σ

|Nh| da,

where N is the Riemannian unit normal compatible with the orientations of Σ and M , and da is
the area element in (M, g). This definition is also valid for an oriented C1 surface Σ.

By a (compactly supported) variation of Σ we mean a map ϕ : I × Σ→M (which we assume to
be C2 unless otherwise stated) defined for some open interval I ⊆ R with 0 ∈ I, and satisfying:

(i) ϕ(0, p) = ϕ0(p) for any p ∈ Σ,
(ii) the map ϕr : Σ→M given by ϕr(p) := ϕ(r, p) is an immersion for any r ∈ I,
(iii) there is a compact set C ⊆ Σ such that ϕr(p) = ϕ0(p) for any r ∈ I and p ∈ Σ− C.

We denote by Σr the immersed surface induced by the map ϕr : Σ → M . It is clear that
Σr − C = Σ − C. For any p ∈ Σ we consider the curve γp(r) := ϕr(p) with r ∈ I. The ve-
locity and acceleration associated to the variation are the vector fields U and W such that

Up := γ̇p(0), Wp := γ̇′p(0), p ∈ Σ.

The area functional A : I → R is the function

(2.13) A(r) := A(Σr) =

∫
Σ

|Nh|r(p) |Jacϕr|(p) da, r ∈ I.

Here |Nh|r(p) := |Nh|
(
γp(r)

)
, where N stands for a C1 vector field along the variation that co-

incides, for any r ∈ I, with the Riemannian unit normal Nr along the immersion ϕr : Σ → M
which is compatible with the orientations of Σ and M . On the other hand, if p ∈ Σ and {e1, e2}
is an orthonormal basis in TpΣ, then |Jacϕr|(p) :=

(
detG(r)

)1/2
, where G(r) is the matrix with

entries
〈
ei(ϕr), ej(ϕr)

〉
with i, j = 1, 2. In (2.13) we understand that the integral is computed in
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the compact set C, so that A(r) is finite and measures the area of ϕr(C). Moreover, since Σ0 has
vanishing Riemannian area we can replace C with C − Σ0.

Now we define a volume functional V (r) associated to the variation ϕ. Since the surfaces Σr
need not be compact nor embedded, we consider the signed volume enclosed between Σ and Σr, see
[3, Sect. 2]. In precise terms, if we denote by dv the volume element in (M, g), then we have

(2.14) V (r) :=

∫
[0,r]×C

ϕ∗(dv).

The variation ϕ is volume preserving if V (r) is a constant function.

We say that the surface Σ is volume-preserving area-stationary if A′(0) = 0 for any volume-
preserving variation. As a well-known consequence of the first variational formulas for area and
volume such a surface has constant mean curvature, see for instance [29, Sect. 4.1] and the refer-
ences therein. This means that the function H in (2.8) is constant on the set Σ−Σ0. When H = 0
the surface Σ is called minimal.

The next result gathers the main properties of CMC surfaces that we need in this work.

Theorem 2.2. Let Σ be an oriented C2 surface of constant mean curvature H immersed in a
Sasakian sub-Riemannian 3-manifold M . Then, we have:

(i) ([11, 25, 44]) any characteristic curve of Σ is a CC-geodesic in M of curvature H,
(ii) ([11, Thm. B], [19, Sect. 5]) the singular set Σ0 consists of isolated points and C1 curves

with non-vanishing tangent vector (singular curves),
(iii) ([11, Prop. 3.5, Cor. 3.6]) if p is contained in a C1 curve Γ ⊆ Σ0, then there is a neigh-

borhood D of p in Σ such that D − Γ is the union of two disjoint connected open sets
D+,D− ( Σ − Σ0. For any q ∈ Γ ∩ D there are exactly two CC-geodesics γ1 ⊂ D+ and
γ2 ⊂ D− of curvature λ leaving from q and meeting transversally Γ at q with opposite initial
velocities. If Np = Tp then λ = H and the CC-geodesics γi, i = 1, 2, are characteristic
curves of Σ. If Np = −Tp then λ = −H.

(iv) ([43, Thm. 4.17, Prop. 4.20], [19, Cor. 5.4]) the surface Σ is volume-preserving area-
stationary if and only if the characteristic curves meet orthogonally the singular curves
when they exist. Moreover, in such a case, any singular curve in Σ is a C2 curve.

The statement (i) above is known as the ruling property of CMC surfaces. This is a direct
consequence of (2.2) and equality

(2.15) DZZ = (2H) νh on Σ− Σ0.

Given a point p ∈ Σ − Σ0, it is clear that {Zp, (νh)p, Tp} is an orthonormal basis of TpM . Thus,
the vector field DZZ is proportional to νh since

〈
DZZ,Z

〉
= 0 and

〈
DZZ, T

〉
= −

〈
Z, J(Z)

〉
= 0.

From (2.7) and (2.9) we get DZνh = T − (2H)Z, which proves (2.15).

For oriented CMC surfaces of class C1, the regularity of the characteristic curves, the ruling
property of the regular set and the description of the singular set are much more involved than in
the C2 case, see [14], [12], [24] and [21]. There are also generalizations of Theorem 2.2 (iv) involving
other sub-Riemannian settings and/or lower regularity hypotheses, see [13], [10], and [26].

3. Stationary surfaces with singular curves

In this section we study in more detail volume-preserving area-stationary surfaces having at
least one singular curve. We first consider arbitrary Sasakian sub-Riemannian 3-manifolds, where
we derive some useful computations for Section 4. Later we will obtain properties of these surfaces,
specially in the embedded case, when the ambient manifold is a 3-dimensional space form. Our
analysis will be necessary to prove the instability result in Section 5.



INSTABILITY CRITERION IN SUB-RIEMANNIAN 3-SPACE FORMS 9

3.1. The general case.

According to Theorem 2.2 (iii), around any point in a singular curve, a volume-preserving area-
stationary C2 surface is union of CC-geodesics segments of the same curvature leaving orthogonally
from the curve. This motivates the next construction where, for a given horizontal curve, we
produce CMC neighborhoods foliated by orthogonal CC-geodesic rays of the same length.

Let M be a Sasakian sub-Riemannian 3-manifold, Γ : I →M a C3 horizontal curve parameter-
ized by arc-length, and λ ∈ R. For any i ∈ {1, 2} and ε ∈ I, we take the CC-geodesic γi,ε(s) in

M of curvature λ with γi,ε(0) = Γ(ε) and γ̇i,ε(0) = (−1)i−1 J(Γ̇(ε)). We suppose that there are
numbers si > 0 with i = 1, 2 such that the C2 maps Fi : I × [0, si]→M given by Fi(ε, s) := γi,ε(s)
are well-defined immersions. We define the immersed surfaces

(3.1) Σi,λ(Γ) := Fi(I × [0, si]) = {γi,ε(s) ; ε ∈ I, s ∈ [0, si]},

and the functions vi,ε(s) :=
〈
Xi,ε(s), T

〉
, where Xi,ε(s) := (∂Fi/∂ε)(ε, s). We will denote by primes

′ the derivatives of functions depending on s and the covariant derivatives of vector fields along Γ.

In the next lemma we compute and analyze the behaviour near Γ of some geometric quantities on
Σi,λ(Γ). In the model spaces M(κ) with κ ∈ {0, 1} some of the statements below were proved in [43,
Prop. 6.3, Re. 6.5] and [28, Prop. 5.5, Re. 5.6] by using the explicit expression of the CC-geodesics.
The extension property in (v) was also proved in [11, Prop. 3.5].

Lemma 3.1. In the previous situation, we have:

(i) vi,ε(s) is a C∞ function of s with

vi,ε(0) = 0, v′i,ε(0) = 2 (−1)i, v′′i,ε(0) = 2h(ε),

where h(ε) :=
〈
Γ̇′(ε), J(Γ̇(ε))

〉
,

(ii) a point p = Fi(ε, s) belongs to the singular set of Σi,λ(Γ) if and only if vi,ε(s) = 0. In
particular Γ is a singular curve of Σi,λ(Γ).

Furthermore, if vi,ε(s) 6= 0 for any s ∈ (0, si), then:

(iii) there is a Riemannian unit normal Ni on Σi,λ(Γ) such that Ni = T along Γ, and any CC-
geodesic γi,ε(s) with s ∈ (0, si) is a characteristic curve of Σi,λ(Γ). In particular Σi,λ(Γ)
has constant mean curvature λ with respect to Ni,

(iv) in the coordinates (ε, s) ∈ I × (0, si) these equalities hold

dai =

√
4 vi,ε(s)2 + v′i,ε(s)

2

2
dε ds,

|(Ni)h|(ε, s) =
2 (−1)i vi,ε(s)√

4 vi,ε(s)2 + v′i,ε(s)
2
,

〈
Ni, T

〉
(ε, s) =

(−1)i v′i,ε(s)√
4 vi,ε(s)2 + v′i,ε(s)

2
,

Si(ε, s) =
2 (−1)i−1√

4 vi,ε(s)2 + v′i,ε(s)
2
Xi,ε(s)− λ |(Ni)h|(ε, s)Zi(ε, s),

〈
B(Zi), Si

〉
(ε, s) =

2 vi,ε(s) v
′′
i,ε(s) + 4 vi,ε(s)

2 − v′i,ε(s)2

4 vi,ε(s)2 + v′i,ε(s)
2

,

where dai is the Riemannian area element on Σi,λ(Γ) and {Zi, Si} is the tangent orthonor-
mal basis defined in (2.3) and (2.4).

(v) the vector field Si extends continuously to Γ in such a way that S1 = Γ̇ = −S2 along Γ.
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(vi) the functions
〈
B(Zi), Si

〉
and qi := |B(Zi) + Si|2 + 4 (K − 1) |(Ni)h|2, where K is the

Webster curvature of M , satisfy

lim
ε→ε0, s→0

〈
B(Zi), Si

〉
(ε, s) = −1, lim

ε→ε0 s→0

(
|(Ni)h|−1 qi

)
(ε, s) = 0,

for any ε0 ∈ I.

Proof. From Lemma 2.1 (i) we know that Xi,ε is a C∞ vector field along γi,ε. Hence vi,ε(s) is a

C∞ function of s. Note that Xi,ε(0) = Γ̇(ε), and so vi,ε(0) = 0 since Γ is horizontal. By using
Lemma 2.1 (ii) we get the equality

(3.2) Xi,ε = −(λ vi,ε) γ̇i,ε + (v′i,ε/2) J(γ̇i,ε) + vi,ε T,

from which v′i,ε(0) = 2 (−1)i. By differentiating with respect to s, we deduce

X ′i,ε(0) = 2λJ(Γ̇(ε)) +
(−1)i

2
v′′i,ε(0) Γ̇(ε) + (−1)iJ(γ̇i,ε)

′(0) + 2 (−1)i TΓ(ε).

Note that J(γ̇i,ε)
′ = 2λ γ̇i,ε − T by (2.1) and (2.2). Hence

X ′i,ε(0) = (−1)i
(
v′′i,ε(0)

2
Γ̇(ε) + TΓ(ε)

)
.

On the other hand, Lemma 2.1 (i) implies [γ̇i,ε, Xi,ε] = 0, so that X ′i,ε = Dγ̇i,εXi,ε = DXi,ε γ̇i,ε
along γi,ε. As a consequence

X ′i,ε(0) = (−1)i−1DXi,εJ(Γ̇) = (−1)i−1
(
J(Γ̇′(ε))− TΓ(ε)

)
= (−1)i

(
h(ε) Γ̇(ε) + TΓ(ε)

)
,

where we have employed (2.1) and that Γ̇′ = hJ(Γ̇). The two previous equalities for X ′i,ε(0) yield
v′′i,ε(0) = 2h(ε). This proves (i). Statement (ii) follows since the tangent plane to Σi,λ(Γ) at
p = Fi(ε, s) is generated by the vectors (∂Fi/∂s)(ε, s) = γ̇i,ε(s) and Xi,ε(s).

To obtain (iii) observe that the map

(3.3) Ni(ε, s) := (−1)i−1
2 vi,ε(s) J(γ̇i,ε(s))− v′i,ε(s)T√

4 vi,ε(s)2 + v′i,ε(s)
2

defines a unit normal vector to Σi,λ(Γ) at Fi(ε, s) with Ni(ε, 0) = TΓ(ε). As we assume that vi,ε never

vanishes in (0, si), the equalities vi,ε(0) = 0 and v′i,ε(0) = 2 (−1)i imply that (−1)i vi,ε > 0 in (0, si).
From (3.3) it is easy to check that the associated characteristic field satisfies Zi(ε, s) = γ̇i,ε(s). Thus
any CC-geodesic γi,ε(s) with s ∈ (0, si) is a characteristic curve of Σi,λ(Γ). By equations (2.15)
and (2.2) this implies that Σi,λ(Γ) has constant mean curvature λ.

Let us prove (iv). From equation (3.2) we have

dai =
(
|Xi,ε|2 −

〈
Xi,ε, γ̇i,ε

〉2)1/2
dε ds =

√
4 vi,ε(s)2 + v′i,ε(s)

2

2
dε ds.

The announced formulas for |(Ni)h| and
〈
Ni, T

〉
come immediately from (3.3). As a consequence,

the associated tangent vector field Si in (2.4) is

Si(ε, s) =
(−1)i+1 v′i,ε(s)√

4 vi,ε(s)2 + v′i,ε(s)
2
J(γ̇i,ε(s)) +

2 (−1)i+1 vi,ε(s)√
4 vi,ε(s)2 + v′i,ε(s)

2
T,

which coincides with the announced expression by virtue of (3.2). On the other hand, the first
identity in equation (2.10) gives us〈

B(Zi), Si
〉

= |(Ni)h|−1 Zi
(〈
Ni, T

〉)
+ 1,

so that, after a straightforward computation, the desired formula for
〈
B(Zi), Si

〉
follows from the

previous ones for
〈
Ni, T

〉
and |(Ni)h|.
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Now, by using the continuity with respect to (ε, s) ∈ I × [0, si] of vi,ε(s) and v′i,ε(s), it follows
from the expression of Si that

lim
ε→ε0, s→0

Si(ε, s) = (−1)i−1Xi,ε0(0) = (−1)i−1 Γ̇(ε0).

Hence Si extends continuously to Γ in such a way that S2 = −S1 = −Γ̇. This proves (v).

Finally we show that (vi) holds. From (3.2) we get

v′i,ε(s) = 2
〈
Xi,ε(s), J

(
γ̇i,ε(s)

)〉
,

so that the derivative v′′i,ε(s) is continuous with respect to (ε, s) in I × [0, si]. Thus, the fact that〈
B(Zi), Si

〉
(ε, s)→ −1 when ε→ ε0 and s→ 0 follows from (i) and the expression for

〈
B(Zi), Si

〉
in (iv). On the other hand, by (2.9) we obtain

B(Zi) + Si =
〈
B(Zi), Zi

〉
Zi +

(
1 +

〈
B(Zi), Si

〉)
Si = 2λ |(Ni)h|Zi +

(
1 +

〈
B(Zi), Si

〉)
Si,

and so

(3.4) |(Ni)h|−1 qi = |(Ni)h|−1
(
1 +

〈
B(Zi), Si

〉)2
+ 4 (λ2 +K − 1) |(Ni)h|.

From the expressions for |(Ni)h| and
〈
B(Zi), Si

〉
in (iv), we have

|(Ni)h|−1
(
1 +

〈
B(Zi), Si

〉)2
(ε, s) =

2 (−1)i vi,ε(s)
(
v′′i,ε(s) + 4 vi,ε(s)

)2(
4 vi,ε(s)2 + v′i,ε(s)

2
)3/2 ,

which tends to 0 when ε→ ε0 and s→ 0. This completes the proof. �

We are now ready to introduce a definition. Let Γ : I → M be a C3 horizontal curve parame-
terized by arc-length. For fixed numbers λ ∈ R and σ > 0 we say that the set

(3.5) Eλ,σ := Σ1,λ(Γ) ∪ Σ2,λ(Γ)

is a λ-neighborhood of Γ of radius σ if these conditions hold:

(i) the sets Σi,λ(Γ) defined in (3.1) for s1 = s2 = σ are well-defined immersed surfaces,
(ii) the function vi,ε does not vanish in (0, σ] for any i = 1, 2.

Note that the second property implies that the singular set of Eλ,σ equals Γ.

The following lemma shows a computation that will be useful in the sequel.

Lemma 3.2. In a λ-neighborhood Eλ,σ of Γ, the outer conormal vector along ∂Eλ,σ is given by

ν =
1√

1 + λ2 |Nh|2
(
Z − λ |Nh|S

)
,

with respect to the Riemannian unit normal N such that N = T along Γ.

Proof. The boundary ∂Eλ,σ consists of the curves βi(ε) := Fi(ε, σ) with i = 1, 2. Thanks to the
formula for Si in Lemma 3.1 (iv), the tangent vector along these curves is

β̇i(ε) = Xi,ε(σ) =

√
4 vi,ε(σ)2 + v′i,ε(σ)2

2 (−1)i−1

(
λ |(Ni)h|(ε, σ)Zi(ε, σ) + Si(ε, σ)

)
.

Hence, the vector field Z−λ |Nh|S is tangent to Eλ,σ and normal to βi. Moreover, by the definition
of Σi,λ(Γ) and Lemma 3.1 (iii), it is clear that this vector points outside Eλ,σ. �
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3.2. The surfaces Cλ(Γ) in 3-dimensional space forms.

Here we analyze complete volume-preserving area-stationary C2 surfaces with singular curves in
3-dimensional space forms. These surfaces can be geometrically described as follows.

Let M be a 3-dimensional space form of Webster curvature κ. Take a complete CC-geodesic
Γ : R → M of curvature µ, and fix λ ∈ R such that λ2 + κ > 0. Following the notation pre-
ceding Lemma 3.1 we consider the maps Fi(ε, s) := γi,ε(s), the vector fields Xi,ε := ∂Fi/∂ε and
the functions vi,ε :=

〈
Xi,ε, T

〉
. By using Lemma 2.1 (iii) together with identities vi,ε(0) = 0,

v′i,ε(0) = 2 (−1)i and v′′i,ε(0) = −4µ, we get that vi,ε does not depend on ε ∈ R, and it is given by

(3.6) vi,ε(s) = vi(s) :=
2√
τ

{
−2µ√
τ

(
1− cos(

√
τs)
)

+ (−1)i sin(
√
τs)

}
,

where τ := 4 (λ2 + κ). In particular, for any i = 1, 2, there is a cut constant si ∈ (0, 2π/
√
τ) such

that vi(si) = 0 and (−1)i vi > 0 on (0, si). From the computations in Lemma 3.1, see also [30,
Lem. 5.7], the associated sets Σi,λ(Γ) in (3.1) satisfy these properties:

(i) Σi,λ(Γ) is a C∞ surface immersed in M ,
(ii) Σi,λ(Γ) has constant mean curvature H = λ with respect to the unit normal Ni such that

Ni = T along Γ. Any CC-geodesic γi,ε(s) with s ∈ (0, si) is a characteristic curve of Σi,λ(Γ),
(iii) the singular set of Σi,λ(Γ) is parameterized by Γ(ε) and Γi(ε) := Fi(ε, si), which are CC-

geodesics of curvature µ. Moreover, Ni = −T along Γi,
(iv) the curves γi,ε meet orthogonally Γi since Γ̇i(ε) = (−1)i−1 J(γ̇i,ε(si)).

We write Γ1 = Γ2 to indicate that Γ1 and Γ2 parameterize the same curve. In that case Σ1,λ(Γ) ∪
Σ2,λ(Γ) is already a complete surface with empty boundary. Otherwise, we continue the construc-
tion by means of the surfaces Σ2,−λ(Γ1) and Σ1,−λ(Γ2), which provides two more singular curves
Γ3 and Γ4. In general, we proceed by induction so that, at step k + 1, we leave orthogonally from
the recently obtained singular curves by CC-geodesics of curvature (−1)k λ until we meet other
singular curves. We denote by Cλ(Γ) the union of all the surfaces Σi,±λ(Γj) obtained in this way.

Similarly, we may define the surfaces Cλ(Γ) when λ2 + κ 6 0. We are only interested in the
particular case of the Heisenberg group M(0). It is known that, when µ = 0, the curve Γ is a
horizontal line and C0(Γ) is congruent to the hyperboloid paraboloid t = xy. If µ 6= 0 then Γ
parameterizes a helix and C0(Γ) is congruent to a left-handed minimal helicoid, see [43, Sect. 6].

Remark 3.3. Examples in M(0) and M(1) show that the surfaces Cλ(Γ) need not be compact nor
embedded, see [43, Ex. 6.7] and [28, Ex. 5.8]. When Γ is a CC-geodesic of curvature µ = 0 in
M(0) or M(1) we get a one-parameter family Cλ(Γ) of embedded cylinders or tori with two singular
curves, see [43, Ex. 6.6] and [28, Ex. 5.7]. In M(1) the surface Cλ(Γ) is C2 around the singular set

only when µ/
√

1 + µ2 ∈ Q. This condition is equivalent to that Γ is a circle [28, Prop. 3.3].

After previous classification theorems in M(0) and M(1), see [43, Thm. 6.11, Thm. 6.15] and [28,
Thm. 5.9], the authors established in [29, Thm. 4.10, Thm. 4.13] the following uniqueness result.

Theorem 3.4. Let Σ be a complete, connected and oriented volume-preserving area-stationary C2

surface immersed in a 3-dimensional space form M . If Σ contains a singular curve Γ, then Γ can
be parameterized as a complete CC-geodesic in M and Σ = Cλ(Γ) for some λ ∈ R.

In the remainder of this section we will deduce some facts about the surfaces Cλ(Γ) to be used in
the proof of Theorem 5.1. The next lemma comes easily from equation (3.6) and Lemma 3.1 (iv).

Lemma 3.5. Along any surface Σi,λ(Γ) with i = 1, 2 we have:

(i) |(Ni)h|,
〈
Ni, T

〉
,
〈
B(Zi), Si

〉
and qi := |B(Zi) + Si|2 + 4 (κ− 1) |(Ni)h|2 only depend on s,

(ii) vi(si − s) = vi(s), for any s ∈ [0, si],
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(iii)
〈
Ni, T

〉
(si − s) = −

〈
Ni, T

〉
(s), for any s ∈ [0, si].

Finally, for an embedded surface Cλ(Γ), we analyze the injectivity of the maps Fi(ε, s) = γi,ε(ε, s)
and the intersection between certain pieces of Cλ(Γ).

Lemma 3.6. Suppose that Cλ(Γ) is embedded. Then, we have:

(i) the singular curves are simultaneously injective curves or circles of the same length `,
(ii) if Fi(ε, s) = Fi(ε

′, s′), where (ε, s), (ε′, s′) ∈ R × [0, si] and i = 1, 2, then (ε, s) = (ε′, s′)
when Γ is injective, or (ε, s) = (ε′ +m`, s′) for some m ∈ Z when Γ is a circle of length `.

Consider the pieces of Cλ(Γ) given by Σi := Σi,λ(Γ) for any i = 1, 2 and Σ3 := Σ1,−λ(Γ2). We get:

(iii) if Γ1 = Γ2 then Σ1 ∩ Σ2 = Γ ∪ Γ1,
(iv) if Γ1 6= Γ2 then Σ1 ∩ Σ2 = Γ, Σ2 ∩ Σ3 = Γ2 and Σ1 ∩ Σ3 = ∅.

Proof. We will denote Σ := Cλ(Γ). As Σ is embedded we can consider the unit normal N defined
over Σ such that N = T along Γ. Clearly N ◦ Fi = Ni, where Ni is given in (3.3). Hence N = −T
along Γi, and so Γ ∩ Γi = ∅.

We first see that Γ is either an injective curve or a circle. Suppose that there are ε, ε′ ∈ R with
ε < ε′ and Γ(ε) = Γ(ε′) = p. Note that Γ̇(ε) = Γ̇(ε′): otherwise, we would contradict that Γ is a
C1 curve that locally separates Σ into two connected components around p, see Theorem 2.2 (iii).
By the uniqueness of CC-geodesics we get Γ(t) = Γ(t+ ε′− ε) for any t ∈ R, so that Γ is a periodic
curve. If ` is the period of Γ, then the previous reasoning shows that Γ : [0, `) → M is injective.
Thus Γ is a circle of length `, as we claimed.

To prove (i) we must check that the behaviour of all the singular curves coincides with that of Γ.
By construction, it suffices to see this for Γi with i = 1, 2. If Γi(ε) = Γi(ε

′) for some ε, ε′ ∈ R, then

the same argument as above yields Γ̇i(ε) = Γ̇i(ε
′). From the expression of Γ̇i and the uniqueness

of CC-geodesics we deduce that γi,ε = γi,ε′ and so, Γ(ε) = Γ(ε′). Thus ε = ε′ if Γ is injective, or
ε′ = ε+m` for some m ∈ Z if Γ is a circle of length `. This leads to the desired conclusion.

Now we prove (ii). Let (ε, s), (ε′, s′) ∈ R × [0, si] such that s 6 s′ and Fi(ε, s) = Fi(ε
′, s′) = p.

Having in mind that Γ∩Γi = ∅ together with statement (i) and the fact that Σi−(Γ∪Γi) ⊂ Σ−Σ0,
we can restrict to the case s, s′ ∈ (0, si). Since γi,ε(s) with s ∈ (0, si) is a characteristic curve of
Σ we infer that γ̇i,ε(s) = γ̇i,ε′(s

′) = Zp. Again, the uniqueness of CC-geodesics implies that
γi,ε(t+ s) = γi,ε′(t+ s′) for any t ∈ R. In particular Γ(ε) = γi,ε′(s

′ − s), so that p′ := γi,ε′(s
′ − s)

is a singular point of Σi such that Np′ = Tp′ . From here we obtain s′ = s, and so γi,ε = γi,ε′ . As a
consequence Γ(ε) = Γ(ε′) and we finish the proof of (ii) by using (i).

Let us prove (iii). It is clear that Γ ⊆ Σ1 ∩ Σ2. Moreover Γ1 ⊆ Σ1 ∩ Σ2 when Γ1 = Γ2.
Take a point p ∈ Σ1 ∩ Σ2. We can write p = F1(ε, s) = F2(ε′, s′) with (ε, s) ∈ R × [0, s1] and
(ε′, s′) ∈ R × [0, s2]. If s ∈ (0, s1) and s′ ∈ (0, s2) then we would reason as in the proof of (ii) to

deduce γ1,ε = γ2,ε′ . This would give us Γ(ε) = Γ(ε′) and J(Γ̇(ε)) = −J(Γ̇(ε′)), which contradicts
that Γ is an injective curve or a circle. Since s ∈ {0, s1} and s′ ∈ {0, s2} then p ∈ Γ or p ∈ Γ1 ∩ Γ2.
In the latter case, it follows from Theorem 2.2 (iii) that Γ1 and Γ2 locally coincide around p. Since
both curves are CC-geodesics of the same curvature we conclude that Γ1 = Γ2. This shows (iii)
and the first equality in (iv).

Finally, suppose that Γ1 6= Γ2. The singular set of Σ3 consists of two CC-geodesics Γ2 and
Γ3 with N = −T along Γ2 and N = T along Γ3. From the definition of Σi,λ(Γ) it is easy to
get Σ3 = Σ1,λ(Γ3) and Σ2 = Σ2,−λ(Γ2). Observe that Γ3 6= Γ; on the contrary, we would have
Σ3 = Σ1,λ(Γ3) = Σ1,λ(Γ) = Σ1 and this would give Γ1 = Γ2, a contradiction. Then, since
Σ3 = Σ1,−λ(Γ2), Σ2 = Σ2,−λ(Γ2) and Γ3 6= Γ, we can infer that Σ3 ∩ Σ2 = Γ2.
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It remains to prove that Σ1 ∩ Σ3 = ∅. Define G(ε, s) := δε(s), where δε : R → M is the CC-

geodesic of curvature −λ with δε(0) = Γ2(ε) and δ̇ε(0) = J(Γ̇2(ε)). According to (3.6) the vertical
components of the vector fields ∂F1/∂ε and ∂G/∂ε are the same function v(s). Thus, the associated
cut constants coincide. The map

(3.7) NG(ε, s) :=
−2 v(s) J(δ̇ε(s)) + v′(s)T√

4 v(s)2 + v′(s)2

assigns to any (ε, s) ∈ R × [0, s1] a unit normal to Σ at G(ε, s) with NG(ε, 0) = −T . Therefore,

equality N ◦G = NG holds. By Lemma 3.1 (iii) the tangent vector δ̇ε(s) coincides with −Zδε(s).
Suppose that there is p ∈ Σ1∩Σ3. We write p = F1(ε, s) = G(ε′, s′) for (ε, s), (ε′, s′) ∈ R× [0, s1].

After discussing trivial cases we may assume s, s′ ∈ (0, s1). From the argument in the proof of (ii)
we obtain γ1,ε(t+ s) = δε′(s

′− t) for any t ∈ R. By evaluating at t = s′ we get γ1,ε(s+ s′) = Γ2(ε′).
If we showed that s + s′ = s1 then we would have Γ1 = Γ2, which is the desired contradiction.
Observe that Np = N1(ε, s) = NG(ε′, s′). Then, equations (3.3) and (3.7) together with equality

γ̇1,ε(s) = −δ̇ε′(s′) = Zp allow us to deduce

v′(s′)

v(s′)
= −v

′(s)

v(s)
=
v′(s1 − s)
v(s1 − s)

,

where the last equality comes from the symmetry property of v in Lemma 3.5 (ii). The conclusion
s+s′ = s1 now follows from the fact that v′/v is decreasing in (0, s1). Indeed, an easy computation
using (3.6) yields

a2 v2 (v′/v)′

4
= b

(
a sin(as) + b cos(as)

)
− (a2 + b2),

where a :=
√
τ = 2

√
λ2 + κ and b = −2µ. The right hand side above is negative because a2 > 0

and |a sin(as) + b cos(as)| 6
√
a2 + b2. This completes the proof of the lemma. �

4. Stability inequality for variations moving singular curves

Let M be a Sasakian sub-Riemannian 3-manifold. A volume-preserving area-stationary C2 sur-
face Σ immersed in M is stable if A′′(0) > 0 for any volume-preserving variation. In this context
we allow the variations to be of class C1, provided the derivative A′′(0) exists.

Our main aim in this section is to prove Theorem 4.6, where we obtain an analytic inequality for
stable surfaces under certain deformations moving finitely many singular curves. This inequality
was previously shown by Ritoré and the authors [27, Prop. 5.2] for left-handed minimal helicoids
in the Heisenberg group M(0). Later, Galli [19, Thm. 8.6] extended the inequality to second order
minima of the area under compactly supported variations in pseudo-Hermitian 3-manifolds. In the
proof of Theorem 4.6 we employ similar arguments to deal with volume-preserving variations of a
CMC surface that may be minimal or not.

4.1. Second variation formulas.

To prove the stability inequality in Theorem 4.6 we need to compute second derivatives involv-
ing the area and volume functionals for certain variations of a volume-preserving area-stationary
surface. Analogous computations have been derived in different settings, see the Introduction of
[29] for a very complete a list of references.

In [29, App. A] the authors established a second variation formula for arbitrary admissible varia-
tions, possibly moving the singular set, of a CMC surface with boundary. The notion of admissible
variation was introduced in [29, Def. 5.1], and it gathers the conditions necessary to differentiate
two times under the integral sign in (2.13). For variations supported on the regular set of the
surface the mentioned formula leads to the next result.
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Proposition 4.1. Let Σ be an oriented C2 surface, possibly with boundary, immersed in a Sasakian
sub-Riemannian 3-manifold M . Suppose that Σ−Σ0 is C3 and has constant mean curvature H. If
ϕ : I×Σ→M is any C3 variation supported on Σ−Σ0 and with velocity vector field U = f N+k T
for some functions f, k ∈ C2

0 (Σ− Σ0), then the derivative (A+ 2H V )′′(0) exists, and we have

(A+ 2H V )′′(0) =

∫
Σ

|Nh|−1
{
Z(u)2 −

(
|B(Z) + S|2 + 4 (K − 1) |Nh|2

)
u2
}
da

+

∫
Σ

divΣ

(
|Nh|W>

)
da+

∫
Σ

divΣ

(
ζ Z + ξ S

)
da.

Here {Z, S} is the orthonormal basis defined in (2.3) and (2.4), the function u := f +
〈
N,T

〉
k

is the normal component of the velocity, B is the Riemannian shape operator, K is the Webster
curvature, W is the acceleration vector field, and the functions ζ, ξ are defined by

ζ :=
〈
N,T

〉 (
1−

〈
B(Z), S

〉)
u2 + |Nh|2

{〈
N,T

〉 (
1−

〈
B(Z), S

〉)
k2 − 2

〈
B(Z), S

〉
f k
}
,

ξ :=
〈
N,T

〉 (
2H |Nh|u2 −

〈
W,N

〉)
− 2H

〈
N,T

〉3 |Nh| k2 + 2H |Nh|
(
1− 2

〈
N,T

〉2)
f k.

Proof. Following [29, Ex. 8.2], for any C3 variation ϕ : I ×Σ→M supported on Σ−Σ0, there is a
open interval I ′ ⊂⊂ I with 0 ∈ I ′ such that the restriction of ϕ to I ′ ×Σ is admissible in the sense
of [29, Def. 5.1]. Thus, we can apply [29, Thm. 7.1] to deduce that the derivative (A+ 2H V )′′(0)
is finite, and can be computed as

(A+ 2H V )′′(0) =

∫
Σ

|Nh|−1
{
Z(u)2 −

(
|B(Z) + S|2 + 4 (K − 1) |Nh|2

)
u2
}
da

+

∫
Σ

divΣ

{〈
N,T

〉 (
1−

〈
B(Z), S

〉)
u2 Z

}
da

+

∫
Σ

divΣ

{〈
N,T

〉 (
2H |Nh|u2 −

〈
W,N

〉)
S
}
da

+

∫
Σ

divΣ

(
|Nh|W>

)
da+

∫
Σ

divΣ

(
h1Z + h2 S

)
da,

where h1 and h2 are the functions involving the tangent vector field Q := U> given by

h1 := 2
{
H
〈
Q,Z

〉
+
〈
N,T

〉 〈
DSQ,Z

〉
+ |Nh|−1

〈
Q,S

〉 (〈
B(Z), S

〉
+
〈
N,T

〉2)}
u

+ |Nh|
(〈
Q,Z

〉 〈
DSQ,S

〉
−
〈
Q,S

〉 〈
DSQ,Z

〉)
+
〈
N,T

〉 〈
Q,Z

〉2 (
1−

〈
B(Z), S

〉)
−
〈
N,T

〉 〈
Q,Z

〉 〈
Q,S

〉 〈
B(S), S

〉
,

h2 := −2
{
H
〈
Q,S

〉
+
〈
N,T

〉 〈
DZQ,Z

〉
− |Nh|

〈
Q,Z

〉}
u

+ |Nh|
(〈
Q,S

〉 〈
DZQ,Z

〉
−
〈
Q,Z

〉 〈
DZQ,S

〉)
+ 2H |Nh|

〈
N,T

〉 〈
Q,Z

〉2
+
〈
N,T

〉 〈
Q,Z

〉 〈
Q,S

〉 (
1 +

〈
B(Z), S

〉)
.

Hence, in order to prove the proposition, it suffices to see that

h1 = |Nh|2
{〈
N,T

〉 (
1−

〈
B(Z), S

〉)
k2 − 2

〈
B(Z), S

〉
f k
}
,

h2 = −2H
〈
N,T

〉3 |Nh| k2 + 2H |Nh|
(
1− 2

〈
N,T

〉2)
f k.

(4.1)

This requires some calculus. On the one hand note that Q = −(|Nh| k)S by (2.5), and so

(4.2)
〈
Q,Z

〉
= 0,

〈
Q,S

〉
= −|Nh| k.

On the other hand, by using the first equality in (2.12) and (2.15) we get

|Nh|−1
〈
N,T

〉 (
1 +

〈
B(Z), S

〉)
= divΣ Z =

〈
DZZ,Z

〉
+
〈
DSZ, S

〉
=
〈
DSZ, S

〉
,

so that

(4.3)
〈
DSQ,Z

〉
= −

〈
Q,DSZ

〉
= |Nh| k

〈
S,DSZ

〉
=
〈
N,T

〉 (
1 +

〈
B(Z), S

〉)
k.
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Again by equation (2.15) we infer

(4.4)
〈
DZQ,Z

〉
= −

〈
Q,DZZ

〉
= |Nh| k

〈
S, 2H νh

〉
= 2H |Nh|

〈
N,T

〉
k.

Now, we substitute (4.2), (4.3), (4.4) and equality u = f +
〈
N,T

〉
k into the definitions of h1 and

h2 above. After simplifying with the help of the identity |Nh|2 +
〈
N,T

〉2
= 1 we obtain (4.1). �

Remark 4.2. The proposition still holds under weaker regularity assumptions on ϕ. For instance,
it is valid for a variation ϕ : I × Σ→M of the form

ϕr(p) := expp(r Up + t(r)w(p)Np),

where expp stands for the Riemannian exponential map at p, the vector field U is C2 with compact

support on Σ − Σ0, and we have functions t ∈ C2(I) and w ∈ C2
0 (Σ − Σ0) with t(0) = 0. In this

situation, arguments similar to those in the proof of [44, Thm. 5.2] provide enough regularity to
derive the second variation formula as in the C3 case. For minimal surfaces in the Heisenberg group
M(0) our formula recovers the one in [27, Thm. 3.7]. A similar formula for minimal surfaces in
pseudo-Hermitian 3-manifolds was given in [19, Thm. 7.3]. We emphasize that Proposition 4.1 is
true for any variation ϕ with velocity U := f N + k T , and for CMC surfaces with H 6= 0.

Next, we compute the second derivative of volume for vertical deformations of Σ. By a vertical
variation of Σ we mean a variation of the form ϕr(p) := expp(r ρ(p)Tp), where ρ has compact
support on Σ and expp denotes the exponential in (M, g) at the point p.

Lemma 4.3. Let Σ be an oriented C2 surface immersed in a Sasakian sub-Riemannian 3-manifold.
Then, for any function ρ ∈ C1

0 (Σ), the volume functional V (r) associated to the C1 vertical varia-
tion ϕr(p) := expp(r ρ(p)Tp) satisfies V ′′(0) = 0.

Proof. The velocity of the variation is the vector field U = ρ T having as normal component the
function u :=

〈
N,T

〉
ρ. Moreover, the acceleration W vanishes since, for any p ∈ Σ, the curve

γp(r) := ϕr(p) is a Riemannian geodesic. We can proceed as in the proof of [44, Eq. (5.18)] and
[29, Eq. (7.15)] to compute the second derivative of volume. We obtain

V ′′(0) =

∫
Σ

{〈
W,N

〉
−
〈
∇Σu,Q

〉
−
〈
B(Q), Q

〉
+ u divΣQ−

(
2H |Nh|+

〈
B(S), S

〉)
u2
}
da,

where ∇Σ denotes the gradient relative to Σ, the function H is the mean curvature of Σ, and Q is
the tangent projection of U . Note that Q = −(|Nh| ρ)S by the second equality in (2.5). By using
equations (2.11) and (2.12) we get〈

∇Σu,Q
〉

= −(|Nh| ρ)S
(〈
N,T

〉
ρ
)

= −|Nh|2
〈
B(S), S

〉
ρ2 − |Nh|

〈
N,T

〉
S(ρ) ρ,〈

B(Q), Q
〉

= |Nh|2
〈
B(S), S

〉
ρ2,

divΣQ = −divΣ

(
|Nh| ρS

)
= −|Nh| ρ divΣ S − S

(
|Nh| ρ

)
= 2H |Nh|

〈
N,T

〉
ρ+

〈
N,T

〉 〈
B(S), S

〉
ρ− |Nh|S(ρ).

By substituting these equalities into the expression for V ′′(0) we see that the integrand vanishes.
This completes the proof of the lemma. �

We finally deduce a second variation formula for the area of a vertical variation which is constant
along any CC-geodesic segment of a λ-neighborhood of some horizontal curve. In [29, Lem. 8.5]
the authors showed conditions for a vertical variation around the singular set to be admissible.
For such variations we could compute A′′(0) from [29, Thm. 7.1]. Unfortunately, this requires the
local integrability of |Nh|−1 with respect to da, which is not guaranteed near a singular curve.
To avoid this difficulty we will follow the arguments in [27, Prop. 3.11] for area-stationary sur-
faces in the Heisenberg group M(0), see [19, Lem. 7.7] for the case of area-stationary surfaces in
pseudo-Hermitian 3-manifolds.
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Proposition 4.4. Let Γ : I → M be a C3 horizontal curve parameterized by arc-length in a
Sasakian sub-Riemannian 3-manifold M . Consider a λ-neighborhood Σ = Eλ,σ of Γ as defined in
(3.5). Take ρ ∈ C1(Σ) such that Z(ρ) = 0 in Σ− Γ and ρΓ := ρ ◦ Γ is a C2 function with compact
support. Then, for any λ-neighborhood E0 ⊆ Σ of Γ with small enough radius, the area functional
A(r) := A(ϕr(E0)) of the C1 vertical variation ϕr(p) := expp(r ρ(p)Tp) satisfies

A′′(0) =

∫
I

ρ′Γ(ε)2 dε =

∫
Γ

S(ρ)2 dl.

In this formula dl is the length element in M , and the value of S along Γ is any of the continuous
extensions in Lemma 3.1 (v).

Proof. Let [−ε0, ε0] ⊂ I be an interval containing the support of ρΓ. By equation (3.5) we can
write Σ = Σ1 ∪ Σ2, where Σi denotes the surface Σi,λ(Γ) defined in (3.1) for s1 = s2 = σ. Choose
the unit normal vector N on Σ whose restriction to Σi equals the vector field Ni in Lemma 3.1 (iii).

We first prove that the area functional A(r) := A(ϕr(Σ)) satisfies

(4.5) A(r) =

∫ ε0

−ε0

(∫ σ

−σ
|r ρ′Γ(ε) + vε(s)| ds

)
dε,

where vε : [−σ, σ]→ R is the function

vε(s) :=

{
v1,ε(s) if s ∈ [0, σ],

v2,ε(−s) if s ∈ [−σ, 0],

and vi,ε is defined just below equation (3.1). The starting point to show (4.5) is the equality (2.13),
which tells that

A(r) =

∫
Σ

|Nh|r(p) |Jacϕr|(p) da,

for any r small enough. By following the proof of [29, Lem. 8.5] and having in mind that Z(ρ) = 0
on Σ, we get

|Nh|r(p) |Jacϕr|(p) = Qp(r)
1/2,

where

Qp(r) := ap r
2 + bp r + cp,

and the coefficients ap, bp and cp are given by

ap := Sp(ρ)2, bp = −2 |Nh|(p)Sp(ρ), cp := |Nh|2(p),

for any p ∈ Σ− Γ. From here it is easy to check that

A(r) =

∫
Σ

∣∣S(ρ) r − |Nh|
∣∣ da.

Now, we compute the previous integral with respect to the coordinates (ε, s) associated to Σi. Since
Z(ρ) = 0 in Σ − Γ then ρ is constant along any CC-geodesic segment γi,ε of curvature λ leaving
orthogonally from Γ. In particular ρ

(
γi,ε(s)

)
= 0 when ε /∈ [−ε0, ε0] and s ∈ (−σ, σ). From the

identities in Lemma 3.1 (iv) and the equality

Xi,ε(ρ) =
d

dε

∣∣∣∣
ε

ρ
(
γi,ε(s)

)
=

d

dε

∣∣∣∣
ε

(ρ ◦ Γ)(ε) = ρ′Γ(ε),

we deduce

A(r) =

2∑
i=1

∫
[−ε0,ε0]×[0,σ]

|r ρ′Γ(ε) + vi,ε(s)| dε ds =

∫ ε0

−ε0

(∫ σ

−σ
|r ρ′Γ(ε) + vε(s)| ds

)
dε,

and so equation (4.5) holds.
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Next we derive the announced formula for A′′(0). Thanks to Lemma 3.1 (i) and the definition
of vi,ε we see that vε(s) is C1 with respect to (ε, s) ∈ (−ε0, ε0)× (−σ, σ). By equality v′ε(0) = −2,
there is σ′ ∈ (0, σ) such that v′ε(s) < 0 for any ε ∈ [−ε0, ε0] and s ∈ (−σ′, σ′). We define

f(ε, s, r) := r ρ′Γ(ε) + vε(s).

This is a C1 function with f(ε, 0, 0) = 0. Moreover (∂f/∂s)(ε, s, r) = v′ε(s), so that (∂f/∂s)(ε, 0, 0) =
−2. By applying the implicit function theorem we can find σ′0 ∈ (0, σ′), r0 > 0, and a C1 function
s : (−ε0, ε0) × (−r0, r0) → (−σ′0, σ′0) such that s(ε, 0) = 0 for any ε ∈ (−ε0, ε0), and equality
f(ε, s, r) = 0 holds for a triple in R := (−ε0, ε0) × (−σ′0, σ′0) × (−r0, r0) if and only if s = s(ε, r).
For (ε, s, r) ∈ R, the fact that (∂f/∂s)(ε, s, r) < 0 implies that f(ε, s, r) > 0 if s ∈ (−σ′0, s(ε, r))
and f(ε, s, r) < 0 if s ∈ (s(ε, r), σ′0). Let E0 := Eλ,σ0 be any λ-neighborhood of Γ of radius σ0 < σ′0.
From (4.5), the area functional A(r) := A(ϕr(E0)) equals

A(r) =

∫ ε0

−ε0
ψε(r) dε,

where

ψε(r) :=

∫ s(ε,r)

−σ0

f(ε, s, r) ds−
∫ σ0

s(ε,r)

f(ε, s, r) ds.

We differentiate into the definition of ψε(r) with respect to r. By using that f(ε, s(ε, r), r) = 0 and
that (∂f/∂r)(ε, s, r) = ρ′Γ(ε), we infer

ψ′ε(r) =

∫ s(ε,r)

−σ0

∂f

∂r
(ε, s, r) ds−

∫ σ0

s(ε,r)

∂f

∂r
(ε, s, r) ds = 2 ρ′Γ(ε) s(ε, r),

so that

ψ′′ε (0) = 2 ρ′Γ(ε)
∂s

∂r
(ε, 0).

On the other hand, by differentiating with respect to r into the equality

0 = f(ε, s(ε, r), r) = r ρ′Γ(ε) + vε
(
s(ε, r)

)
,

we obtain (∂s/∂r)(ε, 0) = ρ′Γ(ε)/2, so that ψ′′ε (0) = ρ′Γ(ε)2. Finally we have

A′′(0) =

∫ ε0

−ε0
ψ′′ε (0) dε =

∫ ε0

−ε0
ρ′Γ(ε)2 dε,

which completes the proof. �

4.2. Stability inequality.

Before stating the main result of this section we need a lemma, which allows to construct volume-
preserving variations of a surface Σ with prescribed velocity U . In the proof we will follow the ideas
that Barbosa and do Carmo employed in Euclidean space when U is normal to Σ, see [2, Lem. 2.4].

Lemma 4.5. Let Σ be an oriented C2 surface immersed in a Sasakian sub-Riemannian 3-manifold
M . Take a C1 vector field U with compact support on Σ and satisfying

∫
Σ
u da = 0, where

u :=
〈
U,N

〉
. For any function w ∈ C2

0 (Σ) with
∫

Σ
w da 6= 0, there is a C2 function t : (−r0, r0)→ R

with t(0) = t′(0) = 0 such that the map

ϕr(p) := expp
(
r Up + t(r)w(p)Np

)
defines a C1 volume-preserving variation of Σ with velocity vector field U .

Proof. For r and t small enough, the family of maps ψr,t : Σ→M given by

ψr,t(p) := expp(r Up + t w(p)Np)
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is a two-parameter C1 variation of Σ. Let Σr,t be the associated immersed surface and V (r, t) the
signed volume enclosed between Σ and Σr,t. By using the first derivative of volume [3, Lem. 2.1]
with the one-parameter variations ψr,0 and ψ0,t, we have

∂V

∂r
(0, 0) =

∫
Σ

u da = 0,
∂V

∂t
(0, 0) =

∫
Σ

w da 6= 0.

Since V (r, t) is a C2 function there exists, by the implicit function theorem, a C2 function t(r) with
r ∈ (−r0, r0) such that t(0) = 0 and V (r, t(r)) = V (0, 0) for any r ∈ (−r0, r0). By differentiating
with respect to r, and taking into account the previous equalities, we infer that t′(0) = 0. Finally,
the map ϕr(p) := ψr,t(r)(p) where r ∈ (−r0, r0) and p ∈ Σ provides the announced variation. �

Now, we are ready to prove the following statement.

Theorem 4.6. Let M be a Sasakian sub-Riemannian 3-manifold and Σ an oriented C2 surface
immersed in M with C3 regular set Σ−Σ0 and constant mean curvature H. Consider any function
u ∈ C1

0 (Σ) ∩ C2(Σ− Σ0) with
∫

Σ
u da = 0, and satisfying that:

(i) the restriction of u to Σ0 is a C2 function with compact support in a set Λ = {Γ1, . . . ,Γm}
of singular curves of class C3,

(ii) there are pairwise disjoint sets {E1, . . . , Em} in Σ such that Ej is a λj-neighborhood of Γj,
the function

〈
N,T

〉
never vanishes on Ej and, either Z(u/

〈
N,T

〉
) = 0 in Ej − Γj for any

j = 1, . . . ,m, or Z(u) = 0 in Ej − Γj for any j = 1, . . . ,m.

If Σ is stable, then we have

(4.6) 0 6 Q(u) :=

∫
Σ

|Nh|−1
(
Z(u)2 − q u2

)
da+

∫
Λ

(
S(u)2 − 4u2

)
dl,

where q := |B(Z) + S|2 + 4 (K − 1) |Nh|2. Here {Z, S} is the orthonormal basis in (2.3) and (2.4),
B is the Riemannian shape operator, K is the Webster curvature of M , the value of S along Γj is
any of the continuous extensions in Lemma 3.1 (v), and dl denotes the length element in M .

Remarks 4.7. (i). The surface Σ could be volume-preserving area-stationary or not. Anyway, we
understand that Σ is stable if A′′(0) > 0 for any volume-preserving variation.

(ii). The definition of Q and the inequality Q(u) > 0 do not depend on the orientation of Σ.
However, Theorem 2.2 and Lemma 3.1 (iii) show that the orientation determines the values of λj
in such a way that λj =

〈
N,T

〉
|Γj

H.

(iii). Note that Q(u) is well defined for any function u ∈ C0(Σ) ∩ C1
0 (Λ) with support disjoint

from the isolated singular points of Σ, and such that |Nh|−1 Z(u)2 is integrable with respect to da.
We do not need to assume the integrability of |Nh|−1 q u2; this comes from Lemma 3.1 (vi) since
|Nh|−1 q extends continuously to Λ.

Proof of Theorem 4.6. We first observe that |Nh|−1 Z(u)2 is integrable on Σ for any function u as in
the statement. This is obvious if Z(u) = 0 in Ej−Γj for any j = 1, . . . ,m. In case Z(u/

〈
N,T

〉
) = 0

we get
〈
N,T

〉
Z(u) = Z(

〈
N,T

〉
)u, and from (2.10) we deduce that

|Nh|−1 Z(u)2 =
|Nh|〈
N,T

〉2 (〈B(Z), S
〉
− 1
)2
u2,

which extends continuously to any singular curve Γj by Lemma 3.1 (vi).

To prove the theorem we distinguish two situations.

Case 1. Suppose that Z(u/
〈
N,T

〉
) = 0 in Ej − Γj for any j = 1, . . . ,m.
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From Proposition 4.4 we can find σ0 > 0 such that, if Eσ denotes the union of the λj-
neighborhoods of Γj of radius σ 6 σ0, then the second derivative of the area for the vertical
variation of Eσ defined by ψr(p) := expp(r ρ(p)Tp) with ρ := u/

〈
N,T

〉
is given by

(4.7)
d2

dr2

∣∣∣∣
r=0

A
(
ψr(Eσ)

)
=

∫
Λ

S(ρ)2 dl =

∫
Λ

S(u)2 dl,

where in the second equality we have used that
〈
N,T

〉
= ±1 along the singular curves in Λ.

Let C be the support of u. For any σ ∈ (0, σ0/2) we take functions aσ, bσ ∈ C2
0 (Σ) such that

bσ = 1 on Eσ ∩ C, the support of bσ is contained in E2σ, and aσ + bσ = 1 on C. We also define a
vector field Uσ on Σ by

Uσ := (aσ u)N + (bσ ρ)T.

Note that Uσ is C1 on Σ and C2 on Σ − Σ0. Moreover it has compact support contained in C,
normal component

〈
Uσ, N

〉
= u, and satisfies Uσ = ρ T on Eσ. Take any function wσ ∈ C2

0 (Σ)

with support disjoint from Eσ and
∫

Σ
wσ da 6= 0. By applying Lemma 4.5, there is a C2 function

tσ(r) with tσ(0) = t′σ(0) = 0, such that the map

ϕσ(r, p) = ϕσr (p) := expp
(
r (Uσ)p + tσ(r)wσ(p)Np

)
defines a C1 volume-preserving variation of Σ with velocity vector field Uσ. If Aσ(r) stands for the
associated area functional, then the stability of Σ implies that A′′σ(0) > 0. From here we will prove
that Q(u) > 0 by computing A′′σ(0) and letting σ → 0.

The function Aσ(r) can be written as

Aσ(r) = A
(
ϕσr (Eσ)

)
+A

(
ϕσr (Σ− Eσ)

)
.

Observe that ϕσr = ψr on Eσ because Uσ = ρ T and wσ = 0 on Eσ. Hence, we can compute the
second derivative of A

(
ϕσr (Eσ)

)
from equation (4.7). On the other hand, since ϕσ is a volume-

preserving variation, we conclude from Lemma 4.3 that

d2

dr2

∣∣∣∣
r=0

V
(
ϕσr (Σ− Eσ)

)
= 0.

This allows to compute the second derivative of A
(
ϕσr (Σ − Eσ)

)
by means of Proposition 4.1 and

Remark 4.2. All this, together with the Riemannian divergence theorem, yields

A′′σ(0) =
d2

dr2

∣∣∣∣
r=0

A
(
ϕσr (Eσ)

)
+

d2

dr2

∣∣∣∣
r=0

A
(
ϕσr (Σ− Eσ)

)
=

∫
Σ−Eσ

|Nh|−1
(
Z(u)2 − q u2

)
da+

∫
Λ

S(u)2 dl

−
∫
∂Eσ

|Nh|
〈
Wσ, νσ

〉
dl −

∫
∂Eσ

ζσ
〈
Z, νσ

〉
dl −

∫
∂Eσ

ξσ
〈
S, νσ

〉
dl,

where Wσ is the acceleration associated to ϕσ, the notation νσ stands for the unit conormal along
∂Eσ pointing into Σ−Eσ, and the functions ζσ, ξσ ∈ C1

0 (Σ−Eσ) are those defined in Proposition 4.1
for fσ := aσ u and kσ := bσ ρ.

To finish the proof in this case we will see that limσ→0A
′′
σ(0) = Q(u). By the dominated

convergence theorem it is clear that

lim
σ→0

∫
Σ−Eσ

|Nh|−1
(
Z(u)2 − q u2

)
da =

∫
Σ

|Nh|−1
(
Z(u)2 − q u2

)
da.

Moreover, since ϕσr = ψr on Eσ, then we have γp(r) := ϕσr (p) = expp(r ρ(p)Tp) for any p ∈ ∂Eσ.
The curve γp is a geodesic in (M, g), so that

(Wσ)p = γ̇′p(0) = 0, p ∈ ∂Eσ.
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Note also that fσ = 0 and kσ = ρ = u/
〈
N,T

〉
along ∂Eσ. By the definition of ξσ in the statement

of Proposition 4.1 we get ξσ = 0 and ζσ =
〈
N,T

〉−1
(1−

〈
B(Z), S

〉
)u2 along ∂Eσ. Having all this

in mind, it remains to check that

(4.8) lim
σ→0

∫
∂Eσ

1−
〈
B(Z), S

〉〈
N,T

〉 〈
Z, νσ

〉
u2 dl = 4

∫
Λ

u2 dl.

Let Γj : I → M be a parameterization by arc-length of one of the singular curves in Λ. Denote
by (Ej)σ ⊆ Eσ the λj-neighborhood of Γj of radius σ. By taking into account Lemma 3.2 and
Remarks 4.7 (ii), we infer that

νσ =

〈
N,T

〉
|Γj√

1 +H2 |Nh|2
(
Z −H |Nh|S

)
along ∂(Ej)σ.

Thus, we obtain∫
∂(Ej)σ

1−
〈
B(Z), S

〉〈
N,T

〉 〈
Z, νσ

〉
u2 dl =

∫
∂(Ej)σ

〈
N,T

〉
|Γj

(
1−

〈
B(Z), S

〉)〈
N,T

〉√
1 +H2 |Nh|2

u2 dl.

We compute the last integral with respect to the coordinates (ε, s) ∈ I × [0, σ] over (Ej)σ defined
in Lemma 3.1. Along any of the two curves Γij in ∂(Ej)σ this integral equals〈

N,T
〉
|Γj

2

∫
I

1−
〈
B(Z), S

〉〈
N,T

〉√
1 +H2 |Nh|2

(ε, σ) u(ε, σ)2 |Xi,ε(σ)| dε,

which tends to

2

∫
Γj

u2 dl when σ → 0

by applying the dominated convergence theorem together with Lemma 3.1 (vi) and the fact that

Xi,ε(0) = Γ̇j(ε). This proves (4.8) and concludes the proof in Case 1.

Case 2. Suppose that Z(u) = 0 in Ej − Γj for any j = 1, . . . ,m.

The proof of this case will follow from the previous one by means of an approximation argument.
For any σ ∈ (0, 1) consider the set Dσ := {p ∈ Σ ; |

〈
Np, Tp

〉
| > 1 − σ}. Clearly Dσ is open in Σ

and contains Σ0. We define φσ : Σ→ [0, 1] by

φσ :=

{
|
〈
N,T

〉
|, in Dσ,

1− σ, in Σ−Dσ.

The function φσ is continuous, piecewise C1 on Σ and piecewise C2 on Σ − Σ0. The sequence
{φσ}σ∈(0,1) equals 1 on Σ0 and pointwise converges to 1 when σ → 0. From the monotone conver-
gence theorem, we deduce

lim
σ→0

∫
Σ

|Nh|−1 Z(φσ)2 da = 0,

since the characteristic functions of Dσ provide a non-decreasing sequence which pointwise con-
verges to 0 in Σ− Σ0. Now, we modify φσ around ∂Dσ to get a sequence {ψσ}σ∈(0,1) of functions

in C1(Σ) ∩ C2(Σ − Σ0) with the same properties. In particular, we have ψσ = |
〈
N,T

〉
| within an

open neighborhood D′σ of Σ0.

Let wσ := ψσ u. We obtain a sequence {wσ}σ∈(0,1) in C1
0 (Σ)∩C2(Σ−Σ0) which pointwise con-

verges to u in Σ, has support contained in the support C of u, and satisfies wσ = u on Σ0. From the
dominated convergence theorem, the Cauchy-Schwarz inequality and the fact that |Nh|−1 q extends
continuously to Λ by Lemma 3.1 (vi), we can show that {Q(wσ)} → Q(u) when σ → 0. For any
j = 1, . . . ,m we choose a λj-neighborhood (Ej)σ of Γj such that (Ej)σ ⊆ Ej and (Ej)σ ∩C ⊆ D′σ.
As a consequence Z(wσ/

〈
N,T

〉
) = Z(±u) = 0 in (Ej)σ − Γj for any j = 1, . . . ,m.
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Finally, consider ϑ ∈ C1
0 (Σ) ∩ C2(Σ − Σ0) such that

∫
Σ
ϑ da = −1, the restriction of ϑ to Σ0 is

C2 with compact support on Λ, and Z(ϑ/
〈
N,T

〉
) = 0 on Ej − Γj for any j = 1, . . . ,m. We define

uσ := wσ +ασ ϑ, where ασ :=
∫

Σ
wσ da. This gives a sequence {uσ}σ∈(0,σ0) in C1

0 (Σ)∩C2(Σ−Σ0)

such that
∫

Σ
uσ da = 0 and Z(uσ/

〈
N,T

〉
) = 0 on (Ej)σ − Γj , for any j = 1, . . . ,m. Hence, we can

apply the theorem for Case 1 to infer Q(uσ) > 0 for any σ ∈ (0, 1). By passing to the limit and
using that {ασ} → 0 when σ → 0, we conclude that Q(u) > 0. �

5. Instability criterion and classification results

In this section we discuss the stability of the surfaces Cλ(Γ) introduced in Section 3.2 for any
3-dimensional space form M . There are some previous related results, specially in the minimal case.
In the Heisenberg group M(0) a surface C0(Γ) is congruent to the hyperbolic paraboloid t = xy or
to a left-handed minimal helicoid, see [43, Sect. 6]. In the first case C0(Γ) is stable and, indeed,
area-minimizing by a calibration argument [43, Thm. 5.3]. In the second case C0(Γ) is unstable as
an area-stationary surface [27, Thm. 5.4]. On the other hand, Galli analyzed the stability of area-
stationary C2 surfaces with singular curves in the roto-translation group [19, Prop. 10.7, Prop. 10.9]
and in the space of rigid motions of the Minkowski plane [20, Cor. 5.6, Cor. 5.8]. More recently,
the authors proved in [30, Thm. 5.8] that all the surfaces Cλ(Γ) in arbitrary 3-dimensional space
forms are stable under volume-preserving variations supported on the regular set.

In our main result below we produce deformations moving the singular curves to show the in-
stability of Cλ(Γ) under additional conditions. The precise statement is the following.

Theorem 5.1. Consider an embedded C2 surface Cλ(Γ) in a 3-dimensional space form M of Web-

ster curvature κ. If we suppose that λ2 + κ > 1 and that the length ` of Γ satisfies ` >
√

2π when
Γ is a circle, then Cλ(Γ) is unstable.

Proof. We will use the notation in Section 3.2. We denote Σ := Cλ(Γ) and choose the unit normal
N on Σ for which N = T along Γ. For any i = 1, 2, let Γi be the singular curve of Σ associated
to the cut constant si ∈ (0, π/

√
λ2 + κ). The restriction of N to Σi,λ(Γ) provides the unit normal

such that H = λ and the CC-geodesic rays γi,ε(s) with s ∈ (0, si) are characteristic curves. Note
that Γ 6= Γi because N = −T along Γi for any i = 1, 2.

From Lemma 3.6 (i) all the singular curves are simultaneously injective curves or circles of the
same length. In the first case we fix any number ` > 0, and consider any smooth function φ : R→ R
with support contained in [0, `]. In the second case, ` stands for the length of Γ and we take any

smooth `-periodic function φ : R→ R. Anyway, we also impose the condition that
∫ `

0
φ(ε) dε = 0.

To show the instability of Σ we will employ a suitable test function u in the stability inequality
of Theorem 4.6. For the construction of u we distinguish two situations.

Case 1. We assume that Γ1 = Γ2.

We know that Σ = Σ1 ∪ Σ2, where Σi := Σi,λ(Γ) for any i = 1, 2. Since Γ1 = Γ2 and both
curves are parameterized by CC-geodesics of the same curvature, we can find ε0 ∈ R such that
Γ2(ε) = Γ1(ε+ ε0) for any ε ∈ R. Moreover ε0 ∈ [0, `] when Γ is a circle.

Take a value σ > 0 with σ < min{s1/2, s2/2}. With respect to the coordinates (ε, s), s ∈ [0, si]
appearing in Lemma 3.1 we define wσ : Σ1 → R by

wσ(ε, s) :=


φ(ε)

〈
N,T

〉
(σ), 0 6 s 6 σ,

φ(ε)
〈
N,T

〉
(s), σ 6 s 6 s1/2,

−φ(ε− ε0)
〈
N,T

〉
(s), s1/2 6 s 6 s1 − σ,

φ(ε− ε0)
〈
N,T

〉
(σ), s1 − σ 6 s 6 s1,
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and wσ : Σ2 → R by

wσ(ε, s) := φ(ε)
〈
N,T

〉
(σ), 0 6 s 6 s2.

Here
〈
N,T

〉
(s) denotes the value of

〈
N,T

〉
along the curve Γs ⊂ Σ1 described by the coordi-

nates (ε, s) when we fix s ∈ [0, s1]. Observe that
〈
N,T

〉
(s1/2) = 0 by Lemma 3.5 (iii). Thanks

to statements (ii) and (iii) in Lemma 3.6, and the `-periodicity of φ when Γ is a circle, we infer
that wσ : Σ → R is a well-defined continuous function with compact support. It is clear that
wσ is piecewise C1 in Σ and piecewise C∞ in Σ − Σ0. Note also that the restriction of wσ to
the singular set Σ0 = Γ ∪ Γ1 is a C∞ function with compact support on Σ0. Moreover, wσ is
C1 around Σ0 and equality Z(wσ) = 0 holds in the union of a λ-neighborhood of Γ with a (−λ)-

neighborhood of Γ1 = Γ2. By using Fubini’s theorem, the equality
∫ `

0
φ(ε) dε = 0, and the fact

deduced from Lemma 3.1 (iv) and equation (3.6) that dai = ji(s) dε ds for some function ji(s), we
get

∫
Σ
wσ da = 0.

Next, we show that limσ→0Q(wσ) < 0 for the quadratic form Q defined in (4.6) as

Q(wσ) :=

∫
Σ

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da+

∫
Σ0

(
S(wσ)2 − 4w2

σ

)
dl.

From Lemma 3.1 (v) the extension to the singular curves of the vector field S coincides, up to
sign, with the tangent vector along these curves. By the definition of wσ we obtain∫

Σ0

(
S(wσ)2 − 4w2

σ

)
dl = 2

〈
N,T

〉2
(σ)

∫ `

0

(
φ′(ε)2 − 4φ(ε)2

)
dε,

so that

(5.1) lim
σ→0

∫
Σ0

(
S(wσ)2 − 4w2

σ

)
dl = 2

∫ `

0

(
φ′(ε)2 − 4φ(ε)2

)
dε.

Now, we compute the first integral in Q(wσ). Since Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = Γ ∪ Γ1 we can
divide the integral into two summands. The fact that Z(wσ) = 0 on Σ2 implies that∫

Σ2

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da = −C

〈
N,T

〉2
(σ)

∫ `

0

φ(ε)2 dε,

where C is the constant defined by

(5.2) C :=

∫ s2

0

|Nh|−1(s) q(s) j2(s) ds.

Here |Nh|(s) and q(s) denote the values of |Nh| and q in coordinates (ε, s) with s ∈ [0, s2] (these
only depend on s by Lemma 3.5 (i)). From Lemma 3.1 (vi) the function |Nh|−1(s) q(s) extends
continuously to [0, s2], and so C is finite. By equation (3.4) we have

|Nh|−1 q = |Nh|−1
(
1 +

〈
B(Z), S

〉)2
+ 4 (λ2 + κ− 1) |Nh|,

so that C > 0 because λ2 + κ > 1. By passing to the limit when σ → 0, it follows that

(5.3) lim
σ→0

∫
Σ2

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da = −C

∫ `

0

φ(ε)2 dε.

Next, we consider the C∞ surface Σσ with empty singular set described by the coordinates (ε, s)
with s ∈ [σ, s1 − σ]. Observe that Z(wσ) = 0 on Σ1 − Σσ. As a consequence∫

Σ1−Σσ

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da = −

∫
Σ1−Σσ

|Nh|−1 q w2
σ da

= −
〈
N,T

〉2
(σ)

(∫ `

0

φ(ε)2 dε

)(∫
[0,σ]∪[s1−σ,s1]

|Nh|−1(s) q(s) j1(s) ds

)
.
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By using again that |Nh|−1(s) q(s) extends continuously to the singular curves, we infer

(5.4) lim
σ→0

∫
Σ1−Σσ

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da = 0.

On the other hand, an application of Lemma 5.2 below to the surfaces Σσ,s1/2 and Σs1/2,s1−σ yields∫
Σσ

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da =

1

`

(∫ `

0

φ(ε)2 dε

) 〈
N,T

〉 (〈
B(Z), S

〉
− 1
)
L`0(Γs)√

1 + λ2 |Nh|2

∣∣∣∣s1−σ
σ

.

From here, and taking into account that
〈
B(Z), S

〉
→ −1 when we approach a singular curve by

Lemma 3.1 (vi), we get

(5.5) lim
σ→0

∫
Σσ

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da = 4

∫ `

0

φ(ε)2 dε.

Having in mind (5.1), (5.3), (5.4) and (5.5), we deduce that

lim
σ→0
Q(wσ) = 2

∫ `

0

φ′(ε)2 dε− (C + 4)

∫ `

0

φ(ε)2 dε.

Recall that ` is any positive number when Γ is injective. Since C > 0 and, by Wirtinger’s inequality

inf

{∫ `
0
φ′(ε)2 dε∫ `

0
φ(ε)2 dε

; φ ∈ C∞(R), φ 6= 0, supp(φ) ⊆ [0, `],

∫ `

0

φ(ε) dε = 0

}
=

4π2

`2
,

we can choose ` and φ(ε) in such a way that limσ→0Q(wσ) < 0. When Γ is a circle of length `, by
taking φ(ε) := sin(2πε/`), it follows that

lim
σ→0
Q(wσ) =

4π2

`
− (C + 4) `

2
,

which is negative by the hypothesis ` >
√

2π and the fact that C > 0. From an approximation
argument similar to that in Case 2 of Theorem 4.6, we can modify wσ around the curves Γs with
s ∈ {σ, s1/2, s1−σ} to produce a function u ∈ C1

0 (Σ)∩C2(Σ−Σ0) with
∫

Σ
u da = 0 and Q(u) < 0.

Thus, we can invoke Theorem 4.6 to conclude that Σ is unstable, as desired.

Case 2. We suppose that Γ1 6= Γ2.

In this case Σ0 contains at least three different singular curves Γ, Γ1 and Γ2. We consider the
pieces of Σ given by Σi := Σi,λ(Γ) for any i = 1, 2 and Σ3 := Σ1,−λ(Γ2). Observe that the functions
in (3.6) coincide for the surfaces Σ1 and Σ3. In particular, the associated cut constants also coincide
and so, we have coordinates (ε, s) with s ∈ [0, s1] to describe both Σ1 and Σ3. To avoid confusions,
in the construction below we will use Ni with i = 1, 3 to denote the restriction of N to Σi.

We will find a test function wσ with compact support in ∪3
i=1Σi and such that wσ 6= 0 along

Γ ∪ Γ2. For any σ ∈ (0, s1/2) we define wσ : Σ1 → R in the coordinates (ε, s) with s ∈ [0, s1] by

wσ(ε, s) :=

 φ(ε)
〈
N1, T

〉
(σ), 0 6 s 6 σ,

φ(ε)
〈
N1, T

〉
(s), σ 6 s 6 s1/2,

0, s1/2 6 s 6 s1,

where
〈
N1, T

〉
(s) is the value of

〈
N,T

〉
along the curve of Σ1 associated to the coordinates (ε, s)

when we fix s ∈ [0, s1]. We also define wσ : Σ2 → R by

wσ(ε, s) := φ(ε)
〈
N1, T

〉
(σ), 0 6 s 6 s2,

and wσ : Σ3 → R by

wσ(ε, s) :=

 φ(ε)
〈
N1, T

〉
(σ), 0 6 s 6 σ,

−φ(ε)
〈
N3, T

〉
(s), σ 6 s 6 s1/2,

0, s1/2 6 s 6 s1,
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where
〈
N3, T

〉
(s) is the value of

〈
N,T

〉
along the curve in Σ3 having coordinates (ε, s) with s ∈ [0, s1]

fixed. We extend wσ to the whole surface Σ by setting wσ = 0 in Σ− ∪3
i=1Σi.

Note that
〈
N1, T

〉
(s1/2) = 0 by Lemma 3.5 (iii), and that

〈
N1, T

〉
(s) = −

〈
N3, T

〉
(s) for any

s ∈ [0, s1] by the expressions of N1 and N3 appearing in (3.3) and (3.7). By taking into account
statements (ii) and (iv) in Lemma 3.6, the function wσ : Σ → R is well defined and continuous.
Moreover, it is piecewise C1 in Σ and piecewise C∞ in Σ − Σ0. Around the singular set wσ is C1

and satisfies Z(wσ) = 0. The fact that
∫ `

0
φ(ε) dε = 0 implies that

∫
Σ
wσ da = 0.

Now, we can proceed as in Case 1 to compute limσ→0Q(wσ). The formulas (5.1) and (5.3) still
holds in this case. On the other hand, with the help of Lemma 5.2 below, we obtain

lim
σ→0

∫
Σ1

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da = lim

σ→0

∫
Σ3

|Nh|−1
(
Z(wσ)2 − q w2

σ

)
da = 2

∫ `

0

φ(ε)2 dε.

By combining everything, we arrive at

lim
σ→0
Q(wσ) = 2

∫ `

0

φ′(ε)2 dε− (C + 4)

∫ `

0

φ(ε)2 dε.

From this point we can reason as in Case 1 to deduce the instability of Σ. �

Lemma 5.2. For given values 0 < a < b < s1, let Σa,b be the portion of Σ1 associated to the
coordinates (ε, s) with s ∈ [a, b]. Let w : Σa,b → R defined by w(ε, s) := φ(ε)

〈
N,T

〉
(s), for some

function φ ∈ C1(R). Suppose that φ has support contained in an interval [α, β] of length ` when Γ
is injective, or that it is `-periodic when Γ is a circle of length `. Then, we have∫

Σa,b

|Nh|−1
(
Z(w)2 − q w2

)
da =

1

`

(∫ β

α

φ(ε)2 dε

) 〈
N,T

〉 (〈
B(Z), S

〉
− 1
)
L`0(Γs)√

1 + λ2 |Nh|2

∣∣∣∣b
a

,

where L`0(Γs) denotes the length in [0, `] of the curve Γs described by the coordinates (ε, s) when we
fix s ∈ [a, b].

Proof. First, we need to show that identity

(5.6) divΣ

(〈
N,T

〉 (〈
B(Z), S

〉
− 1
)
Z
)

= |Nh|−1
(
Z(
〈
N,T

〉
)2 − q

〈
N,T

〉2)
holds for any oriented CMC surface Σ of class C2 having regular set Σ− Σ0 of class C3. For this,
we consider the second order operator

L(ψ) := |Nh|−1
(
Z(Z(ψ)) + 2 |Nh|−1

〈
N,T

〉 〈
B(Z), S

〉
Z(ψ) + q ψ

)
.

From the expressions of Z(|Nh|) and divΣ Z in (2.10) and (2.12), we get

L(ψ) = divΣ

(
|Nh|−1 Z(ψ)Z

)
+ |Nh|−1 q ψ.

On the other hand, it was proved in [30, Lem. 3.4] that L(
〈
N,T

〉
) = 0, so that

divΣ

(
|Nh|−1 Z(

〈
N,T

〉
)Z
)

= −|Nh|−1 q
〈
N,T

〉
.

Therefore, for any function u ∈ C1(Σ) we deduce

divΣ

(
|Nh|−1 uZ(

〈
N,T

〉
)Z
)

= −|Nh|−1 q
〈
N,T

〉
u+ |Nh|−1 Z(

〈
N,T

〉
)Z(u),

which provides (5.6) when we choose u =
〈
N,T

〉
and use (2.10).
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Now, we prove the formula in the statement. Let Σ∗a,b be the subset of Σa,b where ε ∈ [0, `]. By

taking into account (5.6) and applying the Riemannian divergence theorem, we obtain∫
Σa,b

|Nh|−1
(
Z(w)2 − q w2

)
da

=

(∫ β

α

φ(ε)2 dε

)(∫ b

a

|Nh|−1(s)
(〈
N,T

〉′
(s)2 − q(s)

〈
N,T

〉2
(s)
)
j1(s) ds

)
=

1

`

(∫ β

α

φ(ε)2 dε

)(∫
Σ∗a,b

|Nh|−1
(
Z(
〈
N,T

〉
)2 − q

〈
N,T

〉2)
da

)
=

1

`

(∫ β

α

φ(ε)2 dε

)(∫
Σ∗a,b

divΣ

(〈
N,T

〉 (〈
B(Z), S

〉
− 1
)
Z
)
da

)
=
−1

`

(∫ β

α

φ(ε)2 dε

) ∫
∂Σ∗a,b

〈
N,T

〉 (〈
B(Z), S

〉
− 1
) 〈
Z, ν

〉
dl,

where ν stands for the unit conormal along ∂Σ∗a,b pointing into Σa,b. Observe that
〈
Z, ν

〉
= 0 along

the portion of ∂Σ∗a,b contained inside characteristic segments (which is empty when Γ is a circle of

length `). Therefore, the desired formula comes from the expression of ν in Lemma 3.2. �

Remark 5.3. In the proof of the theorem the hypotheses λ2 + κ > 1 and ` >
√

2π guarantee that
some of the considered functions wσ satisfy Q(wσ) < 0. The first hypothesis is only used to prove
that the constant C in (5.2) is nonnegative. This condition may fail if λ2 + κ < 1. For instance,
the surface Cλ(Γ) in M(0) obtained when Γ is a horizontal line and λ > 0 satisfies that Cλ → −∞
when λ→ 0. It is also natural to ask if the second hypothesis is necessary. In Example 6.3 we show
some evidence of the existence of a stable surface Cλ(Γ) where Γ is a circle of length ` 6

√
2π.

The instability criterion in Theorem 5.1 can be combined with previous characterization and
stability results to deduce the classification of stable and embedded C2 surfaces in the simply
connected 3-dimensional space forms of non-negative Webster curvature.

Corollary 5.4. Let Σ be a complete, connected, oriented and embedded C2 surface in the sub-
Riemannian sphere M(1). If Σ is stable, then Σ is a Pansu spherical surface.

Proof. Note that the singular set Σ0 of Σ cannot be empty; otherwise, we would deduce from [44,
Cor. 6.9] that Σ is unstable. Thus, it follows from Theorem 2.2 (ii) that Σ0 must contain an isolated
point or a C1 curve. In the first case the authors proved in [28, Thm. 5.3], see also [29, Thm. 4.9],
that Σ must be a Pansu spherical surface. In the second case, we know from Theorem 3.4 that
Σ = Cλ(Γ) for some CC-geodesic Γ in M(1). As we pointed out in Remark 3.3 the curve Γ must
be a circle because Σ is C2 around Σ0. Hence, the length ` of Γ satisfies ` > 2π by [29, Prop. 2.5].
Now, we can apply Theorem 5.1 to conclude that Σ is unstable. �

Corollary 5.5. Let Σ be a complete, connected, oriented and embedded C2 surface in the Heisen-
berg group M(0). If Σ is stable, then Σ is a Euclidean plane, a Pansu sphere or a surface C0(Γ)
with Γ a horizontal line.

Proof. If Σ0 = ∅ then the stability condition implies that Σ is a vertical plane by [44, Cor. 6.9]. In
case Σ0 6= ∅ the characterization results for volume-preserving area-stationary C2 surfaces in M(0),
see [43, Sect. 6] and also [29, Sec. 4.2], imply that Σ is either a Euclidean horizontal plane, a Pansu
sphere, or a surface Cλ(Γ). Let us analyze the case Σ = Cλ(Γ).

When λ = 0 it is known [43, Thm. 6.15] that, either Γ is a horizontal line and Σ is congruent
to the hyperbolic paraboloid t = xy, or Γ is a helix and Σ is congruent to a left-handed minimal
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helicoid. It was proved in [27, Thm. 5.4] that such helicoids are unstable as area-stationary sur-
faces, i.e., under compactly supported variations that need not preserve volume. By using global
coordinates (ε, s) ∈ R2 of a helicoid, and a suitable function ψ ∈ C∞0 (R), it was possible to find a
test function u(ε, s) := φ(ε)ψ(s) satisfying Q(u) < 0, for any φ ∈ C∞0 (R) with support [−ε0, ε0]
and ε0 > 0 big enough. If we also require φ to have mean zero, then the same proof shows that the
left-handed helicoids are also unstable as volume-preserving area-stationary surfaces.

Finally, consider the case λ 6= 0. Let δr be the anisotropic dilation in M(0) given by

δr(x, y, t) := (er x, er y, e2r t).

For any C2 surface Σ, it is well known that (δr(Σ))0 = δr(Σ0), A(δr(Σ)) = e3r A(Σ), and the mean
curvature of δr(Σ) equals e−rH, see for instance [43]. On the other hand, as δ∗r (dv) = e4r dv,
we can proceed as in [27, Lem. 3.2] to deduce that Σ is stable if and only if δr(Σ) is stable. By
choosing r := log(|λ|) we get that the stability of Σ = Cλ(Γ) is equivalent to the stability of C±1(Ψ),
where Ψ := δr(Γ). Since none of the CC-geodesics in M(0) is a circle we can invoke Theorem 5.1
to conclude the instability of C±1(Ψ). �

Remark 5.6. In the previous corollaries the converse statements are also true in the following
sense. In M(0) a calibration argument, see [43, Thm. 5.3] and [4, Thm. 2.3], shows that the Eu-
clidean planes and the surfaces C0(Γ) with Γ a horizontal line are area-minimizing and, in particular,
stable. On the other hand, the authors proved in [29, Thm. 5.9] that the Pansu spheres of any
3-space form are stable under volume-preserving admissible variations which are C3 off the poles.

6. The isoperimetric problem in the sub-Riemannian 3-sphere

We finish this work with a uniqueness theorem for C2 isoperimetric regions in M(1). First, we
recall some elementary definitions and facts about the isoperimetric problem.

Let M be a Sasakian sub-Riemannian 3-manifold. For any Borel set Ω ⊆M , the volume of Ω is
the Riemannian volume |Ω| in (M, g). Following [18] we define the perimeter of Ω as

P (Ω) := sup

{∫
Ω

divU dv; |U | 6 1

}
,

where div denotes the divergence operator in (M, g) and U ranges over horizontal C1 vector fields
with compact support on M . Observe that P (Ω) = A(Σ) by the Riemannian divergence theorem
when ∂Ω is a C2 surface Σ. An isoperimetric region in M is a set Ω ⊆M such that P (Ω) 6 P (Ω′)
for any other set Ω′ ⊆M with |Ω′| = |Ω|.

In the model spaces M(κ) the existence of isoperimetric regions of any volume is guaranteed by
the results of Leonardi and Rigot [31, Thm. 3.2], and of Galli and Ritoré [22, Thm. 6.1]. Indeed,
in the sub-Riemannian 3-sphere M(1), as in any compact contact sub-Riemannian manifold, the
existence comes from the lower semicontinuity of the perimeter and a compactness result, see for
instance [32] and [7, Ch. 5]. The regularity of the solutions is still an unsolved question.

If Ω is a bounded C2 isoperimetric region in M , then Σ := ∂Ω is a compact volume-preserving
area-stationary surface. This follows since, for any variation ϕ : I × Σ → M , the associated sur-
faces Σr := ϕr(Σ) satisfy A(Σr) = P (Ωr) and the volume functional |Ωr| of the enclosed sets Ωr
coincides, up to a constant, with the signed volume defined in (2.14). In M(κ) this fact, together
with an Alexandrov type theorem, see [43, Thm. 6.10] and [29, Thm. 4.11], allows to conclude that
Σ is a Pansu spherical surface when κ 6 0.

In M(1) the previous scheme fails because there are many compact volume-preserving area-

stationary surfaces besides the Pansu spheres. For instance, the Clifford tori S1(ρ)× S1(
√

1− ρ2)
with ρ ∈ (0, 1) and the tori Cλ(Γ) where Γ is a horizontal great circle provide first order candidates
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to solve the isoperimetric problem. In order to discard these and other candidates it is natural to
consider the stability condition. This leads us to the following result.

Corollary 6.1. If Ω is a C2 isoperimetric region in the sub-Riemannian 3-sphere M(1), then ∂Ω
is a Pansu spherical surface.

Proof. We denote Σ := ∂Ω, which is a compact and embedded C2 surface in M(1). As Ω is an
isoperimetric region then Σ is stable. In particular, Σ has constant mean curvature H = λ with
respect to the inner unit normal N . Moreover, we can invoke Corollary 5.4 to deduce that any
connected component of Σ is a Pansu sphere. To prove that Σ is connected we will employ a
standard argument with some modifications due to the presence of isolated singular points.

Suppose that there were two connected components Σ1 and Σ2. We consider a function u : Σ→ R
which is a constant ci 6= 0 on Σi, vanishes on Σ − (Σ1 ∪ Σ2), and satisfies

∫
Σ
u da = 0. From [29,

Lem. 8.3] there is an open interval I ⊂ R with 0 ∈ I such that the variation ψ : I×Σ→M(1) defined
by ψ(r, p) := expp(r u(p)Np) is admissible. Choose any function w ∈ C∞0 (Σ1) with

∫
Σ
w da 6= 0

and supported on the regular set. By using Lemma 4.5 we can modify ψ to produce a volume-
preserving variation ϕ of Σ with velocity vector field U := uN . This variation is still admissible
since it coincides with ψ near the singular points. Hence, we can apply the second variation formula
for the Pansu spherical surfaces [29, Thm. 5.2] to obtain

A′′(0) =

∫
Σ

|Nh|−1
{
Z(u)2 −

(
1 + λ2|Nh|2

)2
u2
}
da = −

2∑
i=1

∫
Σi

|Nh|−1
(
1 + λ2|Nh|2

)2
u2 da,

which contradicts the stability of Σ. �

Finally, we will prove a uniqueness result for the C2 solutions of the isoperimetric problem in
the sub-Riemannian model of the 3-dimensional projective space. For that, we need to introduce
some facts about this space.

Let G be the subgroup of isometries of M(1) given by {Id,−Id}. The Sasakian structure and
the quaternion multiplication in M(1) descends to the quotient RP3 := M(1)/G. The associated
projection Π : M(1)→ RP3 is a local isometry between sub-Riemannian 3-manifolds and a covering
map. Hence RP3 is a space form of constant Webster curvature κ = 1.

Suppose that γ̃ : R → RP3 is a complete CC-geodesic of curvature λ. We can write γ̃ = Π ◦ γ
for some complete CC-geodesic γ in M(1). From the expression of γ in [28, Eq. (3.5)] we can show

that γ̃ is injective when λ/
√

1 + λ2 ∈ R−Q or a circle when λ/
√

1 + λ2 ∈ Q. This behaviour only
depends on λ and not on the initial conditions of γ̃.

Corollary 6.2. If Ω is a C2 isoperimetric region in RP3, then ∂Ω is a Pansu spherical surface or
an embedded torus Cλ(Γ) for some CC-geodesic circle Γ of length ` 6

√
2π.

Proof. Take any connected component Σ′ of the surface Σ := ∂Ω. The aforementioned property
of the CC-geodesics in RP3 allows us to apply the stability result in [44, Thm. 6.7, Re. 6.8] to
infer that any complete, oriented and CMC surface of class C2 in RP3 with empty singular set
is unstable. Therefore Σ′0 6= ∅ because Σ is stable. By the characterization of volume-preserving
area-stationary C2 surfaces in Theorem 3.4 and [29, Thm. 4.9], we get that Σ′ is either a Pansu
sphere or an embedded C2 surface Cλ(Γ) for some complete CC-geodesic Γ. If Γ is not a circle
then it is an injective curve by Lemma 3.5 (i). Thus Γ = Π ◦ γ for some complete and injective
CC-geodesic γ in M(1). By [28, Prop. 3.3] the trace of γ is a dense subset of a surface T ⊂ M(1)
congruent to a Clifford torus. Hence, from the local diffeomorphism Π : T → Cλ(Γ), we would con-

clude that Π(T ) = Cλ(Γ) which contradicts that T has empty singular set. Observe that ` 6
√

2π
by Theorem 5.1 since Cλ(Γ) is stable. To finish the proof it suffices to see that Σ is connected. This
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is achieved with the same arguments as in Corollary 6.1 combined with the stability inequality in
Theorem 4.6. �

As happens in other non-simply connected 3-dimensional space forms [29, Ex. 6.2] the Pansu
spheres in RP3 do not always minimize the area for the enclosed volume. Indeed, motivated by
the Riemannian situation described by Ritoré and Ros [42, Thm. 8], we may expect that the ver-
tical Clifford tori of RP3 are isoperimetrically better than the Pansu spheres for a certain range of
volumes. Let us see this in more detail.

Example 6.3. Let Sλ be the Pansu sphere in M(1) of constant mean curvature λ > 0 and south
pole at the identity element for the quaternion product. Note that S0 is a totally geodesic 2-
sphere by [28, Eq. (3.5)]. The area of Sλ can be computed by using the polar coordinates in
[29, Lem. 3.6], so that we get A(Sλ) = π2/(1 + λ2)3/2. On the other hand, consider the Clifford

torus Tρ := S1(ρ) × S1(
√

1− ρ2) with ρ ∈ (0, 1). This is a vertical surface, which means that the
Reeb vector field is always tangent to Tρ, see [28, Ex. 4.6]. Hence |Nh| = 1 along Tρ and so, the
Riemannian area of Tρ coincides with the sub-Riemannian one. As Tρ is antipodally symmetric

then it descends naturally to RP3. The resulting torus has area A(Π(Tρ)) = 2π2ρ
√

1− ρ2 and

divides RP3 into two domains of volumes π2ρ2 and π2 (1 − ρ2). Since limρ→1A(Π(Tρ)) = 0 and
limλ→0A(Π(Sλ)) 6= 0 we deduce that, for λ close enough to 0, the corresponding Pansu sphere in
RP3 is isoperimetrically worse than the vertical Clifford torus of the same volume.

The previous comparison together with Corollary 6.2 implies that, by assuming C2 regularity
of the isoperimetric regions in RP3, there exists a solution bounded by a surface Cλ(Γ). This fact

does not contradict Theorem 5.1 because there are CC-geodesic circles in RP3 of length ` 6
√

2π.
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27. A. Hurtado, M. Ritoré, and C. Rosales, The classification of complete stable area-stationary surfaces in the

Heisenberg group H1, Adv. Math. 224 (2010), no. 2, 561–600. MR 2609016
28. A. Hurtado and C. Rosales, Area-stationary surfaces inside the sub-Riemannian three-sphere, Math. Ann. 340

(2008), no. 3, 675–708. MR MR2358000 (2008i:53038)

29. , Existence, characterization and stability of Pansu spheres in sub-Riemannian 3-space forms, Calc. Var.
Partial Differential Equations 54 (2015), no. 3, 3183–3227. MR 3412407

30. , Strongly stable surfaces in sub-Riemannian 3-space forms, Nonlinear Anal. 155 (2017), 115–139.

MR 3631745
31. G. P. Leonardi and S. Rigot, Isoperimetric sets on Carnot groups, Houston J. Math. 29 (2003), no. 3, 609–637

(electronic). MR MR2000099 (2004d:28008)
32. M. Miranda, Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82 (2003), no. 8,

975–1004. MR 2005202 (2004k:46038)

33. F. Montefalcone, Stability of Heisenberg isoperimetric profiles, arXiv:1110.0707, November 2011.
34. R. Monti, Rearrangements in metric spaces and in the Heisenberg group, J. Geom. Anal. 24 (2014), no. 4,

1673–1715. MR 3261714

35. R. Monti, F. Serra Cassano, and D. Vittone, A negative answer to the Bernstein problem for intrinsic graphs
in the Heisenberg group, Boll. Unione Mat. Ital. (9) 1 (2008), no. 3, 709–727. MR 2455341

36. P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295

(1982), no. 2, 127–130. MR MR676380 (85b:53044)
37. , An isoperimetric inequality on the Heisenberg group, Rend. Sem. Mat. Univ. Politec. Torino (1983),

no. Special Issue, 159–174 (1984), Conference on differential geometry on homogeneous spaces (Turin, 1983).

MR MR829003 (87e:53070)
38. S. D. Pauls, H-minimal graphs of low regularity in H1, Comment. Math. Helv. 81 (2006), no. 2, 337–381.

MR MR2225631 (2007g:53032)
39. D. Prandi, L. Rizzi, and M. Seri, A sub-Riemannian Santaló formula with applications to isoperimetric inequal-
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