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Abstract. Let M be a weighted manifold with boundary ∂M , i.e., a Riemannian
manifold where a density function is used to weight the Riemannian Hausdorff mea-

sures. In this paper we compute the first and second variational formulas of the interior

weighted area for deformations by hypersurfaces with boundary in ∂M . As a con-
sequence, we obtain variational characterizations of critical points and second order

minima of the weighted area with or without a volume constraint. Moreover, in the

compact case, we obtain topological estimates and rigidity properties for free bound-
ary stable and area-minimizing hypersurfaces under certain curvature and boundary

assumptions on M . Our results and proofs extend previous ones for Riemannian man-
ifolds (constant densities) and for hypersurfaces with empty boundary in weighted

manifolds.

1. Introduction

Stable hypersurfaces in a Riemannian manifold with boundary are second order min-
ima of the interior area for compactly supported deformations preserving the boundary
of the manifold and, possibly, the volume separated by the hypersurface. From the first
variation formulas [33] such hypersurfaces have constant mean curvature and free bound-
ary meeting orthogonally the boundary of the manifold. Moreover, the second variation
formula [33] implies that the associated index form is nonnegative for functions with com-
pact support (and mean zero if the volume-preserving condition is assumed). The stability
property has been extensively discussed and plays a central role in relation to classical
minimization problems such as the Plateau problem or the isoperimetric problem.

The study of variational questions associated to the area functional in manifolds with
density, also called weighted manifolds or smooth mm-spaces, has been a focus of atten-
tion in the last years. A manifold with density is a connected Riemannian manifold,
possibly with boundary, where a smooth positive function is used to weight the Hausdorff
measures associated to the Riemannian distance. This kind of structures has been con-
sidered by many authors and provides a generalization of Riemannian geometry which is
currently of increasing interest. For a nice introduction to weighted manifolds we refer
the reader to Chapter 18 of Morgan’s book [26] and to Chapter 3 of Bayle’s thesis [4]. In
the present paper we study free boundary stable hypersurfaces in manifolds with density,
by obtaining variational characterizations, topological and geometrical information, and
rigidity results for the ambient manifold. In order to describe our results in more detail
we need to introduce some notation and definitions.
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Let M be a Riemannian manifold endowed with a density f = eψ. We consider a
smooth oriented hypersurface Σ immersed in M in such a way that int(Σ) ⊂ int(M) and
∂Σ ⊂ ∂M whenever ∂Σ 6= ∅. We say that Σ is strongly f -stationary if it is a critical point
of the weighted area functional under compactly supported deformations moving ∂M
along ∂M . Note that the weighted area Af (Σ) defined in (2.1) is relative to the interior of
M , so that Σ∩ ∂M does not contribute to Af (Σ). If, in addition, the hypersurface Σ has
non-negative second derivative of the weighted area for any variation, then we say that Σ
is strongly f -stable. In the Riemannian setting (constant density f = 1), these definitions
coincide with the classical notions of free boundary minimal and stable hypersurfaces.
Recently, many authors have considered complete strongly f -stable hypersurfaces with
empty boundary, see [16], [19], [14], [12], [15] and [23], among others. However, not much
is known about strongly f -stable hypersurfaces with non-empty boundary, and this has
been in fact our main motivation in the present work.

Our first aim in this paper is to provide variational characterizations of strongly f -
stationary and stable hypersurfaces in the same spirit of the ones given by Ros and
Vergasta in [33] for the Riemannian case. This is done in Section 3, where we follow
the arguments for hypersurfaces with empty boundary in [4, Ch. 3] and [35], in order
to compute the first and second derivatives of the weighted area. As a consequence, we
deduce that a hypersurface Σ in M is strongly f -stationary if and only if it has vanishing
f -mean curvature and meets ∂M orthogonally in the points of ∂Σ, see Corollary 3.3. The
f -mean curvature of Σ is the function Hf in (2.4) previously introduced by Gromov [18]
in relation to the first derivative of the weighted area, see Lemma 3.2. We also show that
the strong f -stability of Σ is equivalent to that the associated f -index form defined in
(3.3) is nonnegative for smooth functions with compact support, see Corollary 3.6. At
this point, it is worth mentioning that the techniques employed in this section allow also
to characterize critical points and second order minima of the weighted area for defor-
mations preserving the weighted volume Vf defined in (2.1). This is closely related to the
partitioning problem, which consists of separating a given weighted volume in M with the
least possible interior weighted area. However, besides showing some relevant situations
in Examples 3.4, 3.7 and 3.8, the partitioning problem and the associated f -stable hyper-
surfaces will not be treated in detail. Some characterization results for compact f -stable
hypersurfaces with free boundary in a Euclidean solid cone where a homogeneous density
is considered can be found in [9].

In the remainder of the paper we mainly investigate the relationship between the topol-
ogy of compact strongly f -stable hypersurfaces and the geometry of the ambient manifold
by means of the second variation formula. As a motivation, note that the f -index form
in (3.3) of a hypersurface Σ is a quadratic form which involves the extrinsic geometry of
Σ, the second fundamental form II of ∂M , and the Bakry-Émery-Ricci curvature Ricf
of M defined in (2.2). The 2-tensor Ricf was first introduced by Lichnerowicz [21], [22],
and later generalized by Bakry and Émery [2] in the framework of diffusion generators.
In particular, it is easy to observe that the stability inequality becomes more restrictive
provided II and Ricf are always semidefinite positive. Hence local convexity of ∂M and
nonnegativity of the Bakry-Émery-Ricci curvature become natural hypotheses in order to
obtain interesting consequences from the stability condition.

In Section 4.1 we establish some results in this direction. In fact, by assuming Ricf >
0 and II > 0 we deduce in a quite straightforward way that a compact strongly f -
stable hypersurface must be totally geodesic, see Lemma 4.1. Moreover, we also have
Ricf (N,N) = 0 and II(N,N) = 0, where N is the unit normal to Σ. In particular, if
Ricf > 0 or II > 0, then there are no compact strongly f -stable hypersurfaces in M . This
property was observed by Simons [39] for the Riemannian case, and later generalized by
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Fan [16], and Cheng, Mejia and Zhou [12] for hypersurfaces with empty boundary in
manifolds with density. On the other hand, Espinar showed in [15] that Lemma 4.1 also
holds for complete strongly f -stable hypersurfaces of finite type and empty boundary.

The simplest examples of strongly f -stable totally geodesic hypersurfaces satisfying
Ricf (N,N) = 0 and II(N,N) = 0 are the horizontal slices {s}×Σ in a Riemannian prod-
uct R × Σ, where Σ is a compact Riemannian manifold of non-negative Ricci curvature,
and the logarithm of the density f is a linear function in R. These are not the unique
examples we may give, i.e., the existence of compact strongly f -stable hypersurfaces in
the above conditions does not imply that the metric of M splits, even locally, as a product
metric, see [24]. However, in Theorem 4.2 we prove the following rigidity result:

If a weighted manifold M with non-negative Bakry-Émery-Ricci curva-
ture and locally convex boundary contains a compact, oriented, embedded,
locally weighted area-minimizing hypersurface Σ with non-empty bound-
ary, then there is a neighborhood of Σ in M isometric to a Riemannian
product (−ε0, ε0)× Σ.

This local result can be globalized by means of a standard continuation argument. As
a consequence, if we further assume that M is complete and Σ minimizes the weighted
area in its isotopy class, then M is a Riemannian quotient of R × Σ. We must remark
that this rigidity result was previously obtained by Liu [23] for weighted area-minimizing
hypersurfaces with empty boundary. To prove it, Liu used the second variation formula
to analyze the weighted area functional for the deformation by normal geodesics leaving
from Σ. In our context, however, a normal geodesic starting from ∂Σ is not necessarily
confined to stay in M , and so this deformation cannot be considered. As we will explain
in more detail later, this difficulty is solved by taking another deformation which moves
∂Σ along ∂M .

In Section 4.2 we provide a topological restriction for strongly f -stable surfaces, and
a rigidity result for weighted area-minimizing surfaces in a weighted 3-manifold M of
non-negative Perelman scalar curvature and f -mean convex boundary. On the one hand,
the Perelman scalar curvature Sf defined in (2.3) is the generalization of the Riemannian
scalar curvature introduced by Perelman [29] when showing that the Ricci flow is a gradi-
ent flow. Let us indicate, as a remarkable difference with respect to the Riemannian case,
that the Perelman scalar curvature is not the trace of the Bakry-Émery-Ricci curvature.
In fact, we have the Bianchi identity Sf = 2∇∗Ricf , where ∇∗ is the adjoint operator
of ∇ with respect to the L2-norm for the weighted volume measure dvf := f dv. We
also remark that Sf is the limit as n tends to infinity of the conformally invariant scalar
curvature Snf introduced by Chang, Gursky and Yang, see [10] for a rigorous statement.
On the other hand, the f -mean convexity of ∂M means that the f -mean curvature of ∂M
is nonnegative when computed with respect to the inner unit normal.

There are several works on the topology of compact stable minimal surfaces in 3-
manifolds of non-negative scalar curvature and mean convex boundary. Schoen and Yau
proved in [36] that, if such a surface Σ is immersed in a Riemannian 3-manifold M of
positive scalar curvature, then it must be topologically a sphere. This was later general-
ized by Fischer-Colbrie and Schoen [17], who showed that, if M has non-negative scalar
curvature, then Σ is a sphere or a totally geodesic flat torus. These results have been
extended for surfaces with empty boundary in manifolds with density by Fan [16] and Es-
pinar [15], respectively. For the case of non-empty boundary, Chen, Fraser and Pang [11],
and Ambrozio [1], have recently proved that a compact free boundary stable minimal
surface inside a 3-manifold of non-negative scalar curvature and mean convex boundary
is either a disk or a totally geodesic flat cylinder. This was previously established in R3
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by Ros [31], who also showed that stable cylinders cannot appear. In Theorem 4.4 we
obtain the following:

A smooth, compact, oriented, strongly f -stable surface Σ with non-empty
boundary inside a 3-manifold M of non-negative Perelman scalar curva-
ture and f -mean convex boundary is either a disk or a totally geodesic
flat cylinder bounded by geodesics in M .

As in the previous results, our proof is based on the second variation for the area, the
Gauss formula and the Gauss-Bonnet theorem. Moreover, after a careful analysis we de-
duce that along a strongly f -stable cylinder we have Ricf (N,N) = 0, II(N,N) = 0 and
the density f must be constant.

The existence of strongly f -stable cylinders in the previous conditions cannot be dis-
carded. In fact, in the Riemannian product R× Σ with constant density, where Σ is the
compact cylinder S1× [a, b] endowed with the Euclidean metric of R3, any horizontal slice
{s} × Σ provides a strongly f -stable cylinder. As in the case Ricf > 0 and ∂M locally
convex, other examples may be given where the Riemannian metric of M does not split
as a product metric. However, in Theorem 4.8 we prove the following rigidity result:

If a weighted 3-manifold M of non-negative Perelman scalar curvature
and f -mean convex boundary contains an oriented, embedded, locally
weighted area-minimizing cylinder Σ, then there is a neighborhood of Σ
in M which is isometric to (−ε0, ε0) × Σ, and the density f is constant
in such neighborhood. Moreover, if M is complete and Σ minimizes the
weighted area in its isotopy class, then R×Σ is an isometric covering of
M , and the density f is constant on M .

We remark that rigidity results for area-minimizing tori and cylinders in Riemannian 3-
manifolds of non-negative scalar curvature and mean convex boundary were previously
established by Cai and Galloway [7], and by Ambrozio [1]. An extension of Cai and
Galloway’s result for surfaces with empty boundary in manifolds with density has been
obtained by Espinar [15]. At this point, it is worth mentioning that our rigidity results
in Theorems 4.2 and 4.8 are independent since the hypotheses Ricf > 0 and ∂M locally
convex do not necessarily imply Sf > 0 and f -mean convexity of ∂M .

Finally, in Section 4.3 we show how the proofs of Theorems 4.4 and 4.8 can be adapted
to provide optimal upper and lower bounds for the weighted area of a compact strongly
f -stable surface in terms of a lower non-vanishing bound for the Perelman scalar cur-
vature of a weighted 3-manifold with f -mean convex boundary. The sharpness of these
area estimates comes from the fact that, in case of equality for a locally weighted area-
minimizing surface, we get the corresponding rigidity results, see Theorems 4.10 and 4.11
for detailed statements. Previous area estimates in Riemannian 3-manifolds were given
by Shen and Zhu [37] when ∂Σ = ∅, and by Chen, Fraser and Pang [11] when ∂Σ 6= ∅.
The associated rigidity results were obtained by Bray, Brendle and Neves [5] under a
positive lower bound on the scalar curvature, and by Nunes [28] under a negative one.
Extensions of these results for surfaces with empty boundary in manifolds with density
were found by Espinar [15]. A unified approach for surfaces with non-empty boundary in
Riemannian 3-manifolds has been given by Ambrozio [1].

We finish this introduction by explaining the geometric approach employed to prove
our local rigidity results. Starting from a strongly f -stationary, totally geodesic hyper-
surface Σ, with Ricf (N,N) = 0 and II(N,N) = 0, we use the implicit function theorem
to find an open neighborhood Ω of Σ in M which is foliated by a one-parameter family of
strongly f -stationary hypersurfaces Σs with Σ0 = Σ, int(Σs) ⊂ int(M) and ∂Σs ⊂ ∂M ,
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see Proposition 4.3. Then, our curvature and convexity assumptions imply that, for such
a family, the derivative of the f -mean curvature function is nonnegative. As a conse-
quence, the associated weighted area is strictly decreasing unless any hypersurface Σs is
totally geodesic and the normal component of the velocity vector along Σs is constant.
Hence, if we start from a locally weighted area-minimizing hypersurface Σ, then we can
deduce that the normal vector field along the hypersurfaces Σs is parallel on the open
set Ω. From here, it is not difficult to conclude that, for some ε0 > 0, the restriction to
(−ε0, ε0)× Σ of the normal exponential map associated to Σ is an isometry.

2. Preliminaries

Let M be a smooth (C∞) connected and oriented (n + 1)-dimensional manifold with
a Riemannian metric g =

〈
· , ·
〉
. We denote by int(M) and ∂M the interior and the

boundary of M , respectively. By a density on M we mean a smooth positive function
f = eψ : M → R used to weight the Hausdorff measures associated to the Riemannian
distance. In particular, the weighted volume of a Borel set Ω ⊆ M and the (interior)
weighted area of a smooth hypersurface Σ are defined by

(2.1) Vf (Ω) :=
∫

Ω

dvf =
∫

Ω

f dv, Af (Σ) :=
∫

Σ∩int(M)

daf =
∫

Σ∩int(M)

f da,

where dv and da stand for the Riemannian elements of volume and area, respectively.
According to the previous definition the set Σ ∩ ∂M does not contribute to Af (Σ). We
will also denote dlf := f dl, where dl is the (n− 1)-dimensional Hausdorff measure in M .

For a Riemannian manifold (M, g) with density f = eψ, the Bakry-Émery-Ricci tensor
is defined by

(2.2) Ricf := Ric−∇2ψ,

where Ric and ∇2 are the Ricci tensor and the Hessian operator in (M, g). For us the
Ricci tensor is given by Ric(u, v) := trace(w 7→ R(u,w)v), where R is the curvature tensor
in (M, g). The Perelman scalar curvature is the function

(2.3) Sf := S − 2 ∆ψ − |∇ψ|2,

where ∆ and ∇ denote the Laplacian and the gradient in (M, g), and S is the scalar
curvature given by S(p) :=

∑n+1
i=1 Ricp(ei, ei), for any orthonormal basis {ei} of TpM .

For a constant density f , we have Ricf = Ric and Sf = S. Note also that Sf does not
coincide in general with the trace of Ricf .

Let Σ be a smooth oriented hypersurface immersed in M . For any smooth vector field
X along Σ, we define the f-divergence relative to Σ of X by

divΣ,f X := divΣX +
〈
∇ψ,X

〉
,

where divΣ is the divergence relative to Σ in (M, g). If N is a unit normal vector along
Σ, then the f-mean curvature of Σ with respect to N is the function

(2.4) Hf := − divΣ,f N = nH −
〈
∇ψ,N

〉
,

where H := (−1/n) divΣN is the mean curvature of Σ in (M, g). By using the Riemann-
ian divergence theorem it was proved in [9, Lem. 2.2] that equality

(2.5)
∫

Σ

divΣ,f X daf = −
∫

Σ

Hf

〈
X,N

〉
daf −

∫
∂Σ

〈
X, ν

〉
dlf ,

holds for any smooth vector field X with compact support on Σ. Here we denote by ν
the conormal vector, i.e., the inner unit normal to ∂Σ in Σ.
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Finally, we define the f-Laplacian relative to Σ of a function u ∈ C∞(Σ) by

(2.6) ∆Σ,fu := divΣ,f (∇Σu) = ∆Σu+
〈
∇Σψ,∇Σu

〉
,

where ∇Σ is the gradient relative to Σ. For this operator we have the following integration
by parts formula, which is an immediate consequence of (2.5)

(2.7)
∫

Σ

u1 ∆Σ,f u2 daf = −
∫

Σ

〈
∇Σu1,∇Σu2

〉
daf −

∫
∂Σ

u1
∂u2

∂ν
dlf ,

where u1, u2 ∈ C∞0 (Σ) and ∂u2/∂ν is the directional derivative of u2 with respect to ν.

3. Stationary and stable free boundary hypersurfaces

In this section we compute the first and the second derivative of area and volume for
a variation of a hypersurface immersed in a manifold with density, and whose bound-
ary lies in the boundary of the manifold. As a consequence, we characterize stationary
points and second order minima of the area with or without a volume constraint, thus
extending previous results in [33] for Riemannian manifolds (constant density f = 1),
and in [4, Ch. 3] for hypersurfaces with empty boundary in weighted manifolds. We will
follow closely the arguments in [35, Sect. 3], where hypersurfaces embedded in Rn+1 and
variations supported away from the boundary were considered. Note also that the first
variational formulas for piecewise regular densities were established in [8, Prop. 2.11].

Let M be a smooth oriented Riemannian manifold endowed with a density f = eψ.
We consider a smooth oriented hypersurface given by an immersion ϕ0 : Σ → M such
that ϕ0(int(Σ)) ⊂ int(M) and ϕ0(∂Σ) ⊂ ∂M . If ∂Σ = ∅ then we adopt the convention
that all the integrals along ∂Σ vanish. We denote by N the unit normal along Σ which
is compatible with the orientations of Σ and M .

By a variation of Σ we mean a smooth map ϕ : (−ε, ε)× Σ→M satisfying:

(i) for any s ∈ (−ε, ε), the map ϕs : Σ → M defined by ϕs(p) := ϕ(s, p) is an
immersion with ϕs(int(Σ)) ⊂ int(M) and ϕs(∂Σ) ⊂ ∂M ,

(ii) ϕ(0, p) = ϕ0(p), for any p ∈ Σ,
(iii) there is a compact set C ⊆ Σ such that ϕs(p) = ϕ0(p) for any p ∈ Σ− C.

The velocity vector is the vector field Xp := (∂ϕ/∂s)(0, p) for any p ∈ Σ. Note that X has
compact support and it is tangent to ∂M in the points of ∂Σ by the condition (i) above.
The function Af (s), that maps any s ∈ (−ε, ε) to the weighted area of Σs := ϕs(Σ) defined
in (2.1), is the weighted area functional associated to the variation. More explicitly

(3.1) Af (s) =
∫

Σ

(f ◦ ϕs) |Jacϕs| da.

If p ∈ Σ and {ei} is any orthonormal basis in TpΣ, then |Jacϕs|(p) is the squared root
of the determinant of the matrix aij with aij =

〈
ei(ϕs), ej(ϕs)

〉
. We define the volume

functional Vf (s) as in [3, Sect. 2], i.e., Vf (s) denotes the signed weighted volume enclosed
between Σ and Σs. More precisely

(3.2) Vf (s) =
∫

[0,s]×C
ϕ∗(dvf ) =

∫
[0,s]×C

(f ◦ ϕ)ϕ∗(dv),

where dvf = f dv is the weighted volume element in M . We say that the variation is
volume preserving if Vf (s) is constant for any s small enough.

Remark 3.1. When Σ is an embedded hypersurface separating an open set Ω ⊂M with
Vf (Ω) < +∞, then we can associate to any variation of Σ a family of open sets Ωs ⊂M

such that Ω0 = Ω and ∂Ωs ∩ int(M) = Σs for any s ∈ I. In this situation it is natural
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to define the volume functional by Volf (s) := Vf (Ωs). Observe that this functional does
not coincide with the signed volume in (3.2), which vanishes for s = 0. However, we have
|V ′f (s)| = |Vol′f (s)| for any s ∈ (−ε, ε).

In the next result we provide explicit expressions for the first derivatives of the func-
tionals Af (s) and Vf (s).

Lemma 3.2 (First variation formulas). Let M be a smooth oriented Riemannian mani-
fold endowed with a density f = eψ. Consider a smooth oriented hypersurface Σ immersed
in M with int(Σ) ⊂ int(M) and ∂Σ ⊂ ∂M . Given a variation ϕ : (−ε, ε)× Σ→M of Σ
with velocity vector X, we have

A′f (0) = −
∫

Σ

Hf u daf −
∫
∂Σ

〈
X, ν

〉
dlf , V ′f (0) =

∫
Σ

u daf ,

where Hf is the f -mean curvature of Σ defined in (2.4), u is the normal component of
X, and ν is the inner unit normal to ∂Σ in Σ.

Proof. By differentiating under the integral sign in (3.1), and taking into account that
(d/ds)|s=0 |Jacϕs| = divΣX, see [38, Sect. 9] and [34, Lem. 5.4], we get

A′f (0) =
∫

Σ

(〈
∇f,X

〉
+ f divΣX

)
da =

∫
Σ

divΣ,f X daf

= −
∫

Σ

Hf u daf −
∫
∂Σ

〈
X, ν

〉
dlf ,

where in the last equality we have used formula (2.5).

Now we compute V ′f (0). As in the proof of [3, Lem. (2.1)] it is easy to see that

ϕ∗(dv)(s, p) =
〈∂ϕ
∂s

(s, p), Ns(p)
〉
ds ∧ da,

where Ns is the unit normal along the immersion ϕs : Σ → M which is compatible
with the orientations of Σ and M . By using the definition of Vf (s) in (3.2) and Fubini’s
theorem, we obtain

V ′f (0) =
∫

Σ

〈
X,N

〉
(f ◦ ϕ) da =

∫
Σ

u daf ,

which finishes the proof. �

We say that the hypersurface Σ is strongly f -stationary if A′f (0) = 0 for any variation
of Σ. If A′f (0) = 0 for any volume-preserving variation of Σ then we will say that Σ is
f -stationary. From the expressions for A′f (0) and V ′f (0) in Lemma 3.2 we can deduce the
following characterization of stationary hypersurfaces.

Corollary 3.3. Let M be a smooth oriented Riemannian manifold endowed with a density
f = eψ. Then, for a smooth oriented hypersurface Σ immersed in M with int(Σ) ⊂ int(M)
and ∂Σ ⊂ ∂M , the following statements are equivalent

(i) Σ is f -stationary (resp. strongly f -stationary).
(ii) The f -mean curvature of Σ defined in (2.4) is a constant H0 (resp. vanishes) and

Σ meets ∂M orthogonally in the points of ∂Σ.
(iii) There is a constant H0 such that (Af + H0 Vf )′(0) = 0 for any variation of Σ

(resp. A′f (0) = 0 for any variation of Σ).
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Proof. We give a proof when Σ is f -stationary (the case strongly f -stationary is easier).
From Lemma 3.2 we can check that (ii) implies (iii), and that (iii) implies (i). To see that
(i) implies (ii) we take a function u ∈ C∞0 (Σ) with supp(u) ⊂ int(Σ) and

∫
Σ
u daf = 0.

As in [3, Lem (2.2)], we find a volume-preserving variation of Σ whose velocity vector X
satisfies

〈
X,N

〉
= u on Σ. The fact that Σ is f -stationary yields

∫
Σ
Hfu daf = 0 for any

u in the previous conditions, and so Hf is constant along Σ. Finally, suppose
〈
Np, ξp

〉
6= 0

for some p ∈ ∂Σ, where ξ denotes the inner unit normal along ∂M . Then, there exists
a smooth vector field Y with compact support on Σ such that

∫
Σ

〈
Y,N

〉
daf = 0 and〈

Y, ν
〉

is a cut-off function along ∂Σ. By using again [3, Lem. (2.2)] we could construct a
volume-preserving variation of Σ with velocity vector X satisfying

〈
X,N

〉
=
〈
Y,N

〉
and〈

X, ν
〉

=
〈
Y, ν

〉
. Hence we would get 0 = A′f (0) = −

∫
∂Σ

〈
X, ν

〉
dlf , a contradiction. �

Example 3.4. Let M = 0××D be a cone over a smooth region D of the unit sphere Sn
in Rn+1. If f = eψ is a radial density, i.e., ψ(p) only depends on |p|, then any sphere
centered at the origin and intersected with M is f -stationary since it has constant f -mean
curvature, see [35, Ex. 3.4], and meets ∂M orthogonally. As was shown in [9, Ex. 4.3] this
also holds if f = eψ is a k-homogeneous density, i.e., f(tp) = tk f(p) for any t > 0 and
any p ∈M−{0}. Different examples of f -stationary curves in planar sectors with density
f(p) = |p|k, k > 0, were found in [13]. On the other hand, if M is a half-space or a slab in
Rn+1 with radial density, then the intersection with M of any hyperplane perpendicular to
∂M and containing 0 has vanishing f -mean curvature, and so it is strongly f -stationary.
Moreover, for the Gaussian density f(p) = e−|p|

2
any hyperplane perpendicular to ∂M is

an f -stationary hypersurface.

Next, we compute the second derivative of the functional Af+Hf Vf for an f -stationary
hypersurface of constant f -mean curvature Hf .

Proposition 3.5 (Second variation formula). Let M be a smooth oriented Riemannian
manifold endowed with a density f = eψ. Let ϕ : (−ε, ε) × Σ → M be a variation of a
smooth oriented hypersurface Σ immersed in M with int(Σ) ⊂ int(M) and ∂Σ ⊂ ∂M . If
Σ is f -stationary with constant f -mean curvature Hf , then we have

(Af +Hf Vf )′′(0) = If (u, u),

where u is the normal component of the velocity vector and If is the symmetric bilinear
form on C∞0 (Σ) defined by

If (v, w) :=
∫

Σ

{〈
∇Σv,∇Σw

〉
−
(
Ricf (N,N) + |σ|2

)
vw
}
daf(3.3)

−
∫
∂Σ

II(N,N) vw dlf .

In the previous expression Ricf denotes the Bakry-Émery-Ricci tensor defined in (2.2),
σ is the second fundamental form of Σ with respect to the unit normal N , and II is the
second fundamental form of ∂M with respect to the inner unit normal.

Proof. First observe that the conormal vector ν to ∂Σ coincides with the inner unit nor-
mal ξ to ∂M along ∂Σ by the orthogonality condition in Corollary 3.3 (ii). Let us denote
by Ns the unit normal along Σs := ϕs(Σ) which is compatible with the orientations of Σ
and M . By using Lemma 3.2 we obtain

(Af +Hf Vf )′(s) = −
∫

Σs

(Hf )s us (daf )s +Hf

∫
Σs

us (daf )s −
∫
∂Σs

〈
Xs, νs

〉
(dlf )s,



FREE BOUNDARY STABILITY AND RIGIDITY IN MANIFOLDS WITH DENSITY 9

where (Hf )s is the f -mean curvature of Σs, (Xs)p := (∂ϕ/∂s)(s, p), us :=
〈
Xs, Ns

〉
and

νs is the conormal vector to ∂Σs. By differentiating into the previous equality and using
that

〈
X, ν

〉
= 0 along ∂Σ, we get

(3.4) (Af +Hf Vf )′′(0) = −
∫

Σ

H ′f (0)u daf −
∫
∂Σ

〈
Xs, νs

〉′(0) dlf ,

where the primes in H ′f (0) and
〈
Xs, νs

〉′(0) denote differentiation along the curve s 7→
ϕs(p). On the one hand, the derivative H ′f (0) was computed in the proof of [35, Prop. 3.6]
for the case of normal variations, see also [35, Re. 3.7]. By taking into account that the
f -mean curvature of Σ is constant, we have

(3.5) H ′f (0) = Lf (u) := ∆Σ,f u+ (Ricf (N,N) + |σ|2)u,

where ∆Σ,f is the f -Laplacian relative to Σ defined in (2.6). On the other hand, the
derivative

〈
Xs, νs

〉′(0) can be computed as in [32, Lem. 4.1 (2)], so that we obtain

(3.6)
〈
Xs, νs

〉′(0) = u

{
∂u

∂ν
+ II(N,N)u

}
,

where ∂u/∂ν is the derivative of u with respect to ν. For further reference, it is worth
noting that

(3.7)
〈
ξ,Ns

〉′(0) = −∂u
∂ν
− II(X,N)− σ(X>, ν),

where X> is the tangent projection of X. This is an immediate consequence of equality

(3.8) N ′s(0) = DX>N −∇Σu,

which is proved in [32, Lem. 4.1 (1)]. By using (3.5) and (3.6), equation (3.4) reads

(Af +Hf Vf )′′(0) = Qf (u, u),

where we define

Qf (v, w) := −
∫

Σ

vLf (w) daf −
∫
∂Σ

v

{
∂w

∂ν
+ II(N,N)w

}
dlf .

Finally, an application of the integration by parts formula in (2.7) yields Qf (u, u) =
If (u, u). This proves the claim. �

Following the terminology in [3] we call f -Jacobi operator of Σ to the second order
linear operator Lf in (3.5). Note that Lf coincides with the derivative of the f -mean
curvature function along the variation. The f -index form of Σ is the symmetric bilinear
form If on C∞0 (Σ) defined in (3.3). By using formula (2.7) we get Qf (v, w) = If (v, w)
for any v, w ∈ C∞0 (Σ). In particular, the symmetry of If gives us the equality∫

Σ

{vLf (w)− wLf (v)} daf =
∫
∂Σ

{
w
∂v

∂ν
− v ∂w

∂ν

}
dlf ,

for any two functions v, w ∈ C∞0 (Σ).

Let Σ be an f -stationary hypersurface of constant f -mean curvature Hf . We say that
Σ is strongly f -stable if we have (Af +Hf Vf )′′(0) > 0 for any variation of Σ. We say that
Σ is f -stable if A′′f (0) > 0 for any volume-preserving variation. For a strongly f -stationary
hypersurface, to be strongly f -stable is the analogous property satisfied by free boundary
stable minimal hypersurfaces in Riemannian manifolds.

By using the orthogonality condition in Corollary 3.3 (ii) and the arguments given in
[3, Lem. (2.2)], any function u ∈ C∞0 (Σ) with

∫
Σ
u daf = 0 is the normal component of

the velocity vector associated to a volume-preserving variation of Σ. As a consequence,
we can deduce the following result from Proposition 3.5.
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Corollary 3.6. Let M be a smooth oriented Riemannian manifold endowed with a den-
sity f = eψ. Consider a smooth oriented f -stationary hypersurface Σ immersed in M
with int(Σ) ⊂ int(M) and ∂Σ ⊂ ∂M . Let If be the index form of Σ defined in (3.3).
Then, we have

(i) Σ is strongly f -stable if and only if If (u, u) > 0, for any u ∈ C∞0 (Σ).
(ii) Σ is f -stable if and only if If (u, u) > 0, for any u ∈ C∞0 (Σ) with

∫
Σ
u daf = 0.

Example 3.7. Let M = 0××D be a cone over a smooth region D of the unit sphere
Sn in Rn+1. Suppose that f = eψ is a smooth radial density on M , and denote by Σ
the intersection with M of a round sphere of radius r centered at 0. By following the
computations in [35, Thm. 3.10] we see that the f -index form associated to Σ is given by

If (u, u) = f(r)
[∫

Σ

(
|∇Σu|2 − |σ|2 u2

)
da−

∫
∂Σ

II(N,N)u2 dl +
∫

Σ

ψ′′(r)u2 da

]
.

In general, we cannot expect that Σ is f -stable. For example, if M is a half-space and
f is strictly log-concave, then we can move Σ by translations along a fixed direction of
∂M to find a function u with

∫
Σ
u daf = 0 and If (u, u) < 0. However, if M is convex

and f is log-convex, then Σ is f -stable. To see this we take a function u ∈ C∞(Σ) with∫
Σ
u daf = 0. On the one hand, we have

∫
Σ
u da = 0 and we can use that Σ is free

boundary stable in M with Euclidean density [30] to deduce that the sum of the two
first terms in If (u, u) is nonnegative. On the other hand, the log-convexity of f implies
ψ′′(r) > 0. So we get If (u, u) > 0, as claimed. As in [35] this fact might suggest that in a
Euclidean solid convex cone endowed with a smooth, radial, log-convex density, any round
sphere centered at the origin intersected with the cone minimizes the interior weighted
area among all the hypersurfaces in the cone enclosing the same weighted volume.

Example 3.8. Let M be a Euclidean solid cone endowed with a k-homogeneous density
f = eψ. In [9, Ex. 4.7] it was shown that the intersection with M of a round sphere
centered at 0 is strongly f -stable if and only if k 6 −n. If M is convex and the Bakry-
Émery-Ricci tensor satisfies Ricf > (1/k)(dψ ⊗ dψ) for some k > 0, then such spherical
caps are f -stable since they are minimizers of the interior weighted area for fixed weighted
volume, see [6, Thm. 1.3] and [25, Cor. 2.11]. In fact, in [9, Thm. 5.11] it is shown that
these are the unique compact f -stable hypersurfaces in M . Unduloidal examples of f -
stable curves inside planar sectors with density f(p) = |p|k, k > 0, appear in [13].

4. Topology and rigidity of compact strongly stable hypersurfaces

In this section we prove the main results of the paper. We will obtain topological
and geometrical restrictions for strongly f -stable hypersurfaces under certain curvature
and boundary assumptions on the ambient manifold. Our statements and proofs are in-
spired by previous results for the Riemannian case, see [7], [5], [28], [24], [11], [1], and for
hypersurfaces with empty boundary in manifolds with density, see [16], [23] and [15].

We will use the same notation as in the previous section. For a given oriented hy-
persurface Σ in a Riemannian manifold M with boundary ∂M , we denote by N , ν and
σ the unit normal to Σ, the conormal vector to ∂Σ, and the second fundamental form
of Σ, respectively. We denote by ξ and II the inner unit normal to ∂M and the second
fundamental form of ∂M with respect to ξ.

4.1. Non-negative Bakry-Émery-Ricci curvature and locally convex boundary.
Let M be a smooth oriented Riemannian manifold endowed with a density f = eψ.
Given a point p ∈ M , we define the Bakry-Émery-Ricci curvature of M at p as the qua-
dratic form v ∈ TpM 7→ Ricf (v, v), where Ricf is the 2-tensor in (2.2). Observe that,
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for an f -stationary hypersurface Σ immersed in M , the f -index form If introduced in
(3.3) involves the normal Bakry-Émery-Ricci curvature Ricf (N,N). As a consequence, if
Ricf (N,N) > 0 on Σ and ∂M is locally convex, i.e., II is always positive semidefinite, then
If (u, u) contains non-positive terms, and so the stability condition in Corollary 3.6 (i)
becomes more restrictive. In fact, by inserting u = 1 inside If we can prove the following
simple but interesting result.

Lemma 4.1. Let M be a smooth oriented Riemannian manifold with locally convex bound-
ary, and endowed with a density f = eψ of non-negative Bakry-Émery-Ricci curvature.
Consider a smooth, compact, oriented, f -stationary hypersurface Σ immersed in M with
int(Σ) ⊂ int(M) and ∂Σ ⊂ ∂M . Then, Σ is strongly f -stable if and only if Σ is totally
geodesic, Ricf (N,N) = 0 on Σ, and II(N,N) = 0 along ∂Σ.

The simplest case where strongly f -stable hypersurfaces in the conditions of Lemma 4.1
appear is the Riemannian product R×Σ, where Σ is a compact manifold of non-negative
Ricci curvature. In fact, for any density f = eψ with ψ(s, p) = as+b, the horizontal slices
{s}×Σ are strongly f -stable hypersurfaces. As it is shown in [24, Sect. 1] other examples
exist where the ambient manifold M does not split along Σ. However, by assuming that
Σ is embedded and locally weighted area-minimizing we can obtain a rigidity result in the
same spirit of the one proved by Liu [23, Thm. 1] for hypersurfaces with empty boundary.
Before stating the theorem we need two definitions. We say that Σ is locally weighted
area-minimizing if for any variation ϕ : (−ε, ε) × Σ → M of Σ, the associated weighted
area functional satisfies Af (0) 6 Af (s) for any s in a small open interval containing the
origin. We say that Σ minimizes the weighted area in its isotopy class if, for any variation
ϕ of Σ such that the maps ϕs : Σ → Σs are diffeomorphisms, then Af (0) 6 Af (s), for
any s ∈ (−ε, ε).

Theorem 4.2. Let M be a smooth oriented Riemannian manifold with locally convex
boundary, and endowed with a density f = eψ of non-negative Bakry-Émery-Ricci cur-
vature. Suppose that Σ is a smooth, compact, oriented, locally weighted area-minimizing
hypersurface embedded in M with int(Σ) ⊂ int(M) and ∂Σ ⊂ ∂M . Then, Σ is totally ge-
odesic, and there is an open neighborhood of Σ in M which is isometric to a Riemannian
product (−ε0, ε0)×Σ. Moreover, if M is complete and Σ minimizes the weighted area in
its isotopy class, then the Riemannian product R× Σ is an isometric covering of M .

Liu’s proof of Theorem 4.2 when ∂Σ = ∅ uses the second variation formula for the area
and the fact that Σ is locally area-minimizing to deduce that the local flow of normal
geodesics leaving from Σ keeps constant the weighted area. However, in the case ∂Σ 6= ∅,
we must deform Σ in a different way since a normal geodesic starting from ∂Σ may leave
the manifold M . This deformation is carried out in the next proposition for hypersurfaces
satisfying the conclusions of Lemma 4.1.

Proposition 4.3. Let M be a smooth oriented Riemannian manifold endowed with a
density f = eψ. Consider a smooth, compact, oriented, f -stationary hypersurface Σ
immersed in M with int(Σ) ⊂ int(M) and non-empty boundary ∂Σ ⊂ ∂M . If Σ is to-
tally geodesic, Ricf (N,N) = 0 on Σ and II(N,N) = 0 along ∂Σ, then there is a variation
ϕ : (−ε0, ε0)×Σ→M of Σ with velocity vector X = N on Σ, and such that any hypersur-
face Σs := ϕs(Σ) is f -stationary. Moreover, if Σ is embedded, then Ω := ϕ

(
(−ε0, ε0)×Σ

)
is an open neighborhood of Σ in M and ϕ : (−ε0, ε0)× Σ→ Ω is a diffeomorphism.

Proof. We adapt to weighted manifolds the arguments in [1, Prop. 10]. Fix a smooth
vector field Y on M such that Y = N on Σ and Y is tangent to ∂M . We denote by {φs}
the associated one-parameter group of diffeomorphisms. For fixed α ∈ (0, 1) we can find
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numbers τ > 0 and δ > 0 such that, for any pair (s, u) with s ∈ (−τ, τ) and u in the open
ball Bδ(0) of the Hölder space C2,α(Σ), the set Σu+s := {φu(p)+s(p) ; p ∈ Σ} is an im-
mersed C2,α hypersurface with int(Σu+s) ⊂ int(M) and ∂Σu+s ⊂ ∂M . Moreover, if Σ is
embedded, then Σu+s is also embedded. Let us denote E := {u ∈ C2,α(Σ) ;

∫
Σ
u daf = 0}

and F := {u ∈ C0,α(Σ) ;
∫

Σ
u daf = 0}. Thus, we have a well-defined map Φ : (−τ, τ) ×

(Bδ(0) ∩ E)→ F × C1,α(∂Σ) given by

Φ(s, u) :=
(

(Hf )u+s −
1

Af (Σ)

∫
Σ

(Hf )u+s daf ,
〈
ξ,Nu+s

〉)
,

where Nu+s and (Hf )u+s denote the unit normal and the f -mean curvature of Σu+s,
respectively. Note that Φ(0, 0) = (0, 0) since Σ is f -stationary. In fact, a hypersurface
Σu+s will be also f -stationary if and only if Φ(s, u) = (0, 0). So, we try to apply the
implicit function theorem to Φ at (0, 0). For any w ∈ E, we can construct the variation
η(s, p) := φsw(p)(p), whose velocity vector equals wN on Σ. By using formulas (3.5) and
(3.7), equalities Ricf (N,N) = |σ|2 = II(N,N) = 0, and the divergence theorem in (2.5),
we get

(dΦ)(0,0)(0, w) =
(
Lf (w)− 1

Af (Σ)

∫
Σ

Lf (w) daf ,−
∂w

∂ν

)
=
(

∆Σ,f (w) +
1

Af (Σ)

∫
∂Σ

∂w

∂ν
dlf ,−

∂w

∂ν

)
,

where ∆Σ,f is the f -Laplacian defined in (2.6). Let us see that (dΦ)(0,0) : {0} × E →
F × C1,α(∂Σ) is an isomorphism. Take functions h ∈ F and k ∈ C1,α(∂Σ). Then we
have

∫
Σ

(h + β) daf =
∫
∂Σ
k dlf , where β := Af (Σ)−1

∫
∂Σ
k dlf . Now, we can apply ex-

istence and uniqueness of solutions for Poisson type equations with Neumann boundary
conditions, see [20, Sect. 3.3] and [27], to conclude that there is a unique function w ∈ E
solving the problem ∆Σ,f (w) = h+β on Σ and ∂w/∂ν = −k along ∂Σ. As a consequence
(dΦ)(0,0)(0, w) = (h, k). Moreover, w is unique in E satisfying this property.

Hence, we can find ε0 > 0 and a curve u : (−ε0, ε0)→ Bδ(0)∩E such that u(0) = 0 and
Φ(s, u(s)) = Φ(0, 0) = (0, 0), for any s ∈ (−ε0, ε0). In particular, any hypersurface Σu(s)+s

is f -stationary. Finally, we define ϕ : (−ε0, ε0) × Σ → M as ϕ(s, p) := φµ(s,p)(p), where
µ(s, p) := s + u(s)(p). Note that ϕ(0, p) = φ0(p) = p for any p ∈ Σ, and so ϕ is a varia-
tion of Σ. For any s ∈ (−ε0, ε0) we have Σs := ϕs(Σ) = Σu(s)+s, which is f -stationary.
The velocity vector equals Xp = (∂µ/∂s)(0, p)Np. By differentiating with respect to s in
equality Φ(s, u(s)) = (0, 0), and using again (3.5) and (3.7), we deduce that (∂µ/∂s)(0, p)
solves the problem ∆Σ,f (w) = 0 on Σ with ∂w/∂ν = 0 along ∂Σ. Hence (∂µ/∂s)(0, p)
is constant as a function of p ∈ Σ. From equality 0 =

∫
Σ
u(s) daf =

∫
Σ

(µ(s, p) − s) daf
we get (∂µ/∂s)(0, p) = 1, so that X = N on Σ. To finish the proof we apply the inverse
function theorem and we find a smaller ε0 > 0 such that Ω := ϕ

(
(−ε0, ε0) × Σ

)
is open

in M and the map ϕ : (−ε0, ε0)× Σ→ Ω is a diffeomorphism. �

Now, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. First note that Σ is strongly f -stationary and strongly f -stable.
So, we can deduce by Corollary 3.3 and Lemma 4.1 that the f -mean curvature Hf of
Σ vanishes, Σ is totally geodesic, and equalities Ricf (N,N) = II(N,N) = 0 hold. In
particular, we can apply Proposition 4.3 to obtain a variation ϕ : (−s0, s0) × Σ → M
of Σ such that X = N on Σ, the hypersurfaces Σs := ϕs(Σ) are all f -stationary, and
Ω := ϕ

(
(−s0, s0)×Σ

)
is an open neighborhood of Σ in M diffeomorphic to (−s0, s0)×Σ.
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Let us prove that the variation ϕ does not increase the area, i.e., Af (s) 6 Af (0)
for any s in a small open interval containing 0. We will use the subscript s to denote
geometric functions and vectors associated to Σs. We define (Xs)p := (∂ϕ/∂s)(s, p)
and us :=

〈
Xs, Ns

〉
. Since u0 = 1, we can assume by continuity that us > 0 on Σs

for any s ∈ (−s0, s0). On the other hand, as any Σs is f -stationary, we deduce by
Corollary 3.3 (ii) that

〈
Xs, νs

〉
= 0 along ∂Σs. In particular, equation (3.6) yields

∂us/∂νs + II(Ns, Ns)us = 0 along ∂Σs. Let Hf (s) be the function that maps any
s ∈ (−s0, s0) to the constant f -mean curvature of Σs. In order to show that ϕ does not
increase the area it suffices, by Lemma 3.2, to see that H ′f (s) > 0 for any s ∈ (−s0, s0).
Observe that H ′f (s) = (Lf )s(us), where (Lf )s is the f -Jacobi operator on Σs defined in
(3.5). As a consequence

H ′f (s)Af (s) =
∫

Σs

H ′f (s) (daf )s =
∫

Σs

(Lf )s(us) (daf )s

=
∫

Σs

{
∆Σs,f (us) +

(
Ricf (Ns, Ns) + |σs|2

)
us
}

(daf )s

=
∫
∂Σs

II(Ns, Ns)us (dlf )s +
∫

Σs

(
Ricf (Ns, Ns) + |σs|2

)
us (daf )s,

where we have used (2.5) and that ∂us/∂νs = −II(Ns, Ns)us. Therefore, the local
convexity of ∂M and the nonnegativity of the Bakry-Émery-Ricci curvature give us
H ′f (s) > 0. Moreover, if equality holds for some s ∈ (−s0, s0), then Σs is totally ge-
odesic, Ricf (Ns, Ns) = 0 on Σs and II(Ns, Ns) = 0 along ∂Σs. In particular, the function
us solves the problem ∆Σs,f (us) = 0 on Σ with ∂us/∂νs = 0 along ∂Σs, so that us must
be constant on Σs.

Now, we can prove the conclusions of the theorem. By using that Σ is locally weighted
area-minimizing, we get Af (s) = Af (0) for any s in a small open interval J containing
0. By Lemma 3.2, this implies Hf (s) ≡ 0, and so H ′f (s) = 0 for any s ∈ J . From the
previous discussion we deduce that Σs is totally geodesic and us is constant on Σs for
any s ∈ J . By taking into account equation (3.8) and that Σs is totally geodesic, we
infer that Ns is a parallel vector field defined on Ω. So, the integral curves of Ns are
geodesics, and we can find ε0 > 0, and an open neighborhood U0 ⊆ Ω of Σ in M , such
that the flow by normal geodesics F : (−ε0, ε0)× Σ→ U0 given by F (s, p) := expp(sNp)
is a diffeomorphism. Moreover, F is an isometry since Ns is a Killing field.

Finally, let us assume that M is complete and Σ minimizes the weighted area in its
isotopy class. Note that the flow by normal geodesics F is well-defined on R×Σ. Let s∞
be the supremum of the set B of the numbers s > 0 such that F : [−s, s] × Σ → M is
an isometry onto its image. Suppose s∞ < +∞ and denote Σ±∞ = F ({s±∞} × Σ). As
in the first part of the proof, we can see that the variation F does not increase the area.
Thus, we would get Af (Σ) = Af (Σ±∞) by the minimization property of Σ. Hence, the
hypersurfaces Σ±∞ would be locally weighted area-minimizing, and we may use the first
conclusion of the theorem to find β > 0 such that s∞ + β ∈ B, a contradiction. So, we
have s∞ = +∞. As a consequence F : R×Σ→M is a local isometry and, in particular,
a covering map. This completes the proof. �

4.2. Non-negative Perelman scalar curvature and f-mean convex boundary.
Here we provide topological estimates and rigidity results for strongly f -stable surfaces
in weighted manifolds by assuming a certain condition on the Perelman scalar curvature
and weighted mean convexity of the boundary. We restrict ourselves to dimension 3 since
the Gauss-Bonnet theorem will be a key ingredient in our proofs.
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We first recall some notation and introduce a definition. Let M be a smooth oriented
Riemannian 3-manifold endowed with a density f = eψ. Recall that the Perelman scalar
curvature is the function defined in (2.3) by Sf := S − 2∆ψ − |∇ψ|2. We will say that
the boundary ∂M is f -mean convex if the f -mean curvature (Hf )∂M of ∂M introduced
in (2.4) is nonnegative when computed with respect to the inner unit normal ξ.

Now we can prove a first result, where we obtain a topological restriction for strongly
f -stable surfaces where Sf +H2

f > 0.

Theorem 4.4. Let M be a smooth oriented Riemannian 3-manifold endowed with a den-
sity f = eψ such that ∂M is f -mean convex. Consider a smooth, compact, connected,
oriented, f -stationary surface Σ immersed in M with int(Σ) ⊂ int(M) and ∂Σ ⊂ ∂M .
If Σ is strongly f -stable and Sf +H2

f > 0, then Σ has non-negative Euler characteristic.
More precisely, we have

(i) If ∂Σ = ∅, then Σ is a sphere or a torus.
(ii) If ∂Σ 6= ∅, then Σ is a disk or a cylinder.

If the Euler characteristic vanishes, then Σ is flat and totally geodesic, the density f is
constant on Σ, and Sf + H2

f = Ricf (N,N) = 0 on Σ. Moreover, if ∂Σ 6= ∅, then it
consists of two closed geodesics in M where II(N,N) = (Hf )∂M = 0.

Proof. We first obtain two identities, one for the interior of Σ and another one for the
boundary ∂Σ, that will be key ingredients to prove the claim. From the Gauss equation
we get the following rearrangement already described in the proof of [36, Thm. 5.1]

Ric(N,N) + |σ|2 =
1
2
S + 2H2 +

1
2
|σ|2 −K,

where H and K denote the Riemannian mean curvature and the Gauss curvature of Σ,
respectively. Note also that

∆ψ = divΣ∇ψ + (∇2ψ)(N,N) = ∆Σψ − 2H
〈
∇ψ,N

〉
+ (∇2ψ)(N,N),

where we have used ∇ψ = ∇Σψ +
〈
∇ψ,N

〉
N and divΣN = −2H to obtain the second

equality. Combining the two previous equations together with (2.2), (2.4) and (2.3), we
deduce

(4.1) Ricf (N,N) + |σ|2 =
1
2

(Sf +H2
f ) +

1
2

(|σ|2 + |∇Σψ|2)−K + ∆Σψ on Σ.

On the other hand, the fact that Σ is f -stationary implies, by Corollary 3.3 (ii), that Σ
meets ∂M orthogonally along the boundary curves. Thus, the inner unit normal ξ of ∂M
coincides with the conormal vector ν. As a consequence II(T, T ) = h, where T is a unit
tangent vector to ∂Σ and h is the geodesic curvature of ∂Σ in Σ. Therefore, we have

(4.2) II(N,N) = 2H∂M − h along ∂Σ,

where H∂M is the Riemannian mean curvature of ∂M with respect to ξ.

Now, we take the function u := 1/
√
f . The strong f -stability of Σ together with

Corollary 3.6 (i) and the definition of f -index form in (3.3) gives us

0 6 If (u, u) =
∫

Σ

{
|∇Σu|2 −

(
Ricf (N,N) + |σ|2

)
u2
}
daf −

∫
∂Σ

II(N,N)u2 dlf ,

where we understand that the boundary integral vanishes provided ∂Σ = ∅. Note that
u2 daf = da, u2 dlf = dl and |∇Σu|2 daf = (1/4) |∇Σψ|2 da. Therefore, by substitut-
ing equalities (4.1) and (4.2) into the previous expression, and taking into account that
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Σ

∆Σψ da = −
∫
∂Σ

〈
∇ψ, ν

〉
dl, we conclude

0 6 If (u, u) =
∫

Σ

{
−1
4
|∇Σψ|2 −

1
2

(Sf +H2
f )− 1

2
|σ|2

}
da+

∫
Σ

K da(4.3)

+
∫
∂Σ

{
−2H∂M +

〈
∇ψ, ν

〉}
dl +

∫
∂Σ

h dl

6
∫

Σ

K da−
∫
∂Σ

(Hf )∂M dl + 2π χ−
∫

Σ

K da

6 2πχ = 2π (2− 2g −m),

where we have used that Sf +H2
f > 0 on Σ, the Gauss-Bonnet theorem, and the f -mean

convexity of ∂M . We have also denoted by χ, g and m the Euler characteristic, the genus
and the number of boundary components of Σ, respectively. From the previous inequality
we easily deduce statements (i) and (ii) of the theorem.

Now, suppose χ = 0. Then, equality holds in (4.3), and so Σ is a totally geodesic
surface such that |∇Σψ|2 = 0, Sf +H2

f = 0 and (Hf )∂M = H∂M = 0. Moreover, we also
have If (u, u) = 0. For any function v ∈ C∞(Σ) and any s ∈ R we get

0 6 If (u+ sv, u+ sv) = If (u, u) + 2s If (u, v) + s2 If (v, v)

= 2s If (u, v) + s2 If (v, v),

since Σ is strongly f -stable and If (u, u) = 0. This implies that If (u, v) = 0 for any
v ∈ C∞(Σ). Let Lf be the f -Jacobi operator defined in (3.5). After applying the inte-
gration by parts formula in (2.7), we obtain

0 = If (v, u) = Qf (v, u) = −
∫

Σ

vLf (u) daf −
∫
∂Σ

v

{
∂u

∂ν
+ II(N,N)u

}
dlf ,

for any v ∈ C∞(Σ). From here we deduce Lf (u) = 0 on Σ and ∂u/∂ν + II(N,N)u = 0
along ∂Σ. By taking into account that u > 0 and that ∇Σu = −(∇Σψ)/(2

√
f) = 0, we

conclude that Ricf (N,N) = 0 on Σ and II(N,N) = 0 along ∂Σ. Finally, equations (4.1)
and (4.2) give K = 0 on Σ and h = 0 along ∂Σ. This completes the proof. �

Example 4.5. Consider the manifold Mr = {p ∈ R3 ; |p| > r} endowed with the Eu-
clidean metric and the radial k-homogeneous density f(p) = |p|k. It is easy to check, see
the computations in [9, Ex. 4.3], that the f -mean curvature of ∂Mr with respect to the
inner unit normal equals −(k + 2)/r. Moreover, the Perelman scalar curvature is given
by Sf (p) = −k |p|−2 (k + 2), see [9, Lem. 3.6] for details. Hence, in the case k = −2, we
have that Mr has f -mean convex boundary and vanishing Perelman scalar curvature. By
applying Theorem 4.4 we conclude that any compact strongly f -stable hypersurface in
Mr is topologically a sphere or a disk.

Example 4.6. Theorem 4.4 shows that the existence of strongly f -stable tori or cylinders
is very restrictive. However, we can find some situations where they appear. Take the
manifold M = R × S1 × [−1, 1] endowed with the Riemannian product metric and the
density f(s, θ, t) = es. It is easy to check that M has f -mean convex boundary and that
any horizontal cylinder Σ = {s}×S1× [−1, 1] is f -stationary with Sf +H2

f = −1 + 1 = 0.
Moreover, Σ is totally geodesic with Ricf (N,N) = 0 and II(N,N) = 0, which implies
by (3.3) and Corollary 3.6 (i) that Σ is strongly f -stable. Similarly, in the Riemannian
product M = R× S1× S1 with density f(s, θ, t) = e−s any horizontal torus {s}× S1× S1

is strongly f -stable.

Observe that Theorem 4.4 applies when ∂Σ = ∅, Sf > 0 on M , and Hf = 0 on Σ, thus
generalizing previous results in [16, Thm. 2.1] and [15, Prop. 8.1]. In the next corollary
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we particularize Theorem 4.4 when Sf > 0 and ∂Σ 6= ∅. This provides an extension of
the results in [11, Thm. 1.2] and [1, Prop. 6] for stable free boundary minimal surfaces in
Riemannian 3-manifolds.

Corollary 4.7. Let M be a smooth oriented Riemannian 3-manifold endowed with a den-
sity f = eψ such that Sf > 0 on M and ∂M is f -mean convex. Consider a smooth, com-
pact, connected, oriented, f -stationary surface Σ immersed in M with int(Σ) ⊂ int(M)
and non-empty boundary ∂Σ ⊂ ∂M . If Σ is strongly f -stable, then Σ is either a disk
or a totally geodesic flat cylinder. In the last case, the density f is constant on Σ,
Sf = Hf = Ricf (N,N) = 0 on Σ, ∂Σ consists of two closed geodesics in M , and
II(N,N) = (Hf )∂M = 0 along ∂Σ.

The existence of strongly stable cylinders in the conditions of the previous corollary
cannot be discarded. The model situation where they appear is a Riemannian product
R × Σ with constant density, where Σ is the compact cylinder S1 × [a, b] endowed with
the Euclidean metric of R3. In fact, any horizontal slice {s} × Σ provides a strongly
stable cylinder. This is not the unique example we may give, in the sense that the ex-
istence of such cylinders does not imply that M locally splits as a Riemannian product,
see [24, Sect. 1]. However, by assuming that the cylinder is embedded and locally area-
minimizing, we can obtain a rigidity result in the same spirit of [7, Thm 1], [15, Thm. 8.1]
and [1, Thm. 7].

Theorem 4.8. Let M be a smooth oriented Riemannian 3-manifold endowed with a den-
sity f = eψ such that Sf > 0 on M and ∂M is f -mean convex. Suppose that there
is a locally weighted area-minimizing smooth oriented cylinder Σ embedded in M with
int(Σ) ⊂ int(M) and ∂Σ ⊂ ∂M . Then, Σ is flat with geodesic boundary, and there is an
open neighborhood of Σ in M which is isometric to a Riemannian product (−ε0, ε0)× Σ
with constant density. Moreover, if M is complete and Σ minimizes the weighted area in
its isotopy class, then the density f is constant in M and the Riemannian product R×Σ
is an isometric covering of M .

Proof. The scheme of the proof is the same as in Theorem 4.2. First note that Σ is
strongly f -stationary and strongly f -stable. So, we can deduce by Corollary 4.7 that the
f -mean curvature Hf of Σ vanishes, the density f is constant on Σ, the surface Σ is totally
geodesic and flat with geodesic boundary, and equalities Ricf (N,N) = II(N,N) = 0 hold.
In particular, we can apply Proposition 4.3 to obtain a variation ϕ : (−s0, s0)× Σ→ M
of Σ such that X = N on Σ, the hypersurfaces Σs := ϕs(Σ) are all f -stationary, and
Ω := ϕ

(
(−s0, s0)×Σ

)
is an open neighborhood of Σ in M diffeomorphic to (−s0, s0)×Σ.

Let us prove that the variation ϕ does not increase the area. We use the subscript
s for denoting the quantities associated to Σs. Define (Xs)p := (∂ϕ/∂s)(s, p) and
us :=

〈
Xs, Ns

〉
. Since u0 = 1, we can suppose that us > 0 on Σs for any s ∈ (−s0, s0). As

Σs is f -stationary, we infer by Corollary 3.3 (ii) that
〈
Xs, νs

〉
= 0 along ∂Σs. Thus equa-

tion (3.6) yields ∂us/∂νs + II(Ns, Ns)us = 0 along ∂Σs. For any s ∈ (−s0, s0), let Hf (s)
be the constant f -mean curvature of Σs. To prove the claim it suffices, by Lemma 3.2, to
show that H ′f (s) > 0 for any s ∈ (−s0, s0). Note that H ′f (s) = (Lf )s(us), where (Lf )s is
the f -Jacobi operator on Σs defined in (3.5). Hence, we have

(4.4) H ′f (s)
∫

Σs

1
us
das =

∫
Σs

(Lf )s(us)
us

das,
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where das is the Riemannian area element on Σs. Let us see that the integrals at the
right-hand side are nonnegative for any s ∈ (−s0, s0). First note that

(4.5) − 2
〈
∇Σs

ψ,∇Σs
us
〉
6 |∇Σs

ψ|2 us +
|∇Σs

us|2

us
.

By taking into account (3.5), (2.6) and (4.1), we get

(Lf )s(us)
us

=
∆Σs

us +
〈
∇Σs

ψ,∇Σs
us
〉

us
+ Ricf (Ns, Ns) + |σs|2(4.6)

>
∆Σs

us
us

− |∇Σs
us|2

2u2
s

+
1
2
(
Sf +Hf (s)2 + |σs|2

)
−Ks + ∆Σs

ψ.

On the other hand, we can use the divergence theorem together with equalities (4.2) and
∂us/∂νs = −II(Ns, Ns)us, to obtain∫

Σs

∆Σsus
us

das =
∫

Σs

|∇Σs
us|2

u2
s

das −
∫
∂Σs

1
us

∂us
∂νs

dls

=
∫

Σs

|∇Σs
us|2

u2
s

das +
∫
∂Σs

2H∂M dls −
∫
∂Σs

hs dls.

By integrating and substituting the previous information into (4.6), we deduce∫
Σs

(Lf )s(us)
us

das >
1
2

∫
Σs

(
|∇Σs

us|2

u2
s

+ Sf +Hf (s)2 + |σs|2
)
das −

∫
Σs

Ks das(4.7)

+
∫
∂Σs

(Hf )∂M dls −
∫
∂Σs

hs dls

=
1
2

∫
Σs

(
|∇Σsus|2

u2
s

+ Sf +Hf (s)2 + |σs|2
)
das

+
∫
∂Σs

(Hf )∂M dls − 2πχ(Σs),

where we have applied the Gauss-Bonnet theorem. Finally, the fact that Σs is topologi-
cally a cylinder together with hypotheses Sf > 0 and (Hf )∂M > 0, allows us to conclude
that

∫
Σs

(Lf )s(us)/us das > 0, as we claimed. If we have equality for some s ∈ (−s0, s0),
then Σs is totally geodesic and the function us is constant on Σs. Moreover, by (4.5) we
get that the density f is constant on Σs.

Now, the first conclusion of the theorem follows as in Theorem 4.2 by using that Σ is
locally weighted area-minimizing. In particular, Hf (s) = 0 for any s ∈ (−s0, s0), and so

0 = Hf (s) = −
〈
∇ψ,Ns

〉
by equation (2.4). As a consequence, the density f is constant in a neighborhood of Σ.
The second conclusion in the statement can also be deduced as in Theorem 4.2. �

Remark 4.9. It is important to observe that our rigidity result in Theorem 4.2 does
not follow from Theorem 4.8 since the Perelman scalar curvature Sf is not the trace of
Ricf . This is a remarkable difference with respect to Riemannian geometry, where non-
negative Ricci curvature implies non-negative scalar curvature. For example, in R3 with
the Gaussian density f(p) = e−|p|

2
, we have Ricf (v, v) = 2|v|2 for any vector v, and

Sf (p) = 12− 4|p|2 for any p ∈ R3.
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4.3. Perelman scalar curvature and area estimates. The proof of Theorem 4.4 can
be adapted to deduce upper and lower bounds for the weighted area of compact strongly
stable surfaces. These area estimates involve a non-vanishing lower bound on the Perel-
man scalar curvature, and they are sharp, in the sense that the equality cases lead to
rigidity results for area-minimizing surfaces. In this way we obtain results in the spirit of
[37, Thm. 3], [5], [28, Thm. 3 and Cor. 1], [11, Thm. 1.2], [1, Thms. 8 and 9] for the Rie-
mannian case, and of [15, Sects. 8 and 9] for surfaces with empty boundary in manifolds
with density. The precise statements are the following.

Theorem 4.10. Let M be a smooth oriented Riemannian 3-manifold endowed with
a density f = eψ such that ∂M is f -mean convex and Sf > S0f on M for some
S0 > 0. Consider a smooth, compact, connected, oriented, f -stationary surface Σ with
int(Σ) ⊂ int(M) and non-empty boundary ∂Σ ⊂ ∂M . If Σ is strongly f -stable, then Σ
is topologically a disk with Af (Σ) 6 4π/S0. Moreover, if Σ is embedded, locally weighted
area-minimizing, and Af (Σ) = 4π/S0, then Σ is a totally geodesic disk of constant Gauss
curvature (S0f)/2 bounded by geodesics, and there is an open neighborhood of Σ in M
which is isometric to a Riemannian product (−ε0, ε0)×Σ with constant density. Finally,
if M is complete and Σ minimizes the weighted area in its isotopy class, then the density
f is constant in M and the Riemannian product R× Σ is an isometric covering of M .

Theorem 4.11. Let M be a smooth oriented Riemannian 3-manifold endowed with
a density f = eψ such that ∂M is f -mean convex and Sf > S0f on M for some
S0 < 0. Consider a smooth, compact, connected, oriented, f -stationary surface Σ with
int(Σ) ⊂ int(M) and non-empty boundary ∂Σ ⊂ ∂M . If Σ is strongly f -stable and has
negative Euler characteristic χ, then Af (Σ) > 4πχ/S0. Moreover, if Σ is embedded, lo-
cally weighted area-minimizing, and Af (Σ) = 4πχ/S0, then Σ is a totally geodesic surface
of constant Gauss curvature (S0f)/2 bounded by geodesics, and there is an open neighbor-
hood of Σ in M which is isometric to a Riemannian product (−ε0, ε0)× Σ with constant
density. Finally, if M is complete and Σ minimizes the weighted area in its isotopy class,
then the density f is constant in M and the Riemannian product R × Σ is an isometric
covering of M .

Remark 4.12. Let g be the genus of Σ and m the number of boundary components.
Then, the hypothesis χ < 0 is equivalent to that g > 1, or g = 0 and m > 3.

Proof of Theorems 4.10 and 4.11. The first part of the statements comes from the proof
of Theorem 4.4. In fact, equation (4.3) yields

0 6 If (u, u) 6 2πχ− 1
2

∫
Σ

Sf da 6 2πχ− S0

2
Af (Σ),

from which we deduce the area estimates. Moreover, in the equality cases, we get that f
is constant on Σ, the surface Σ is totally geodesic with constant Gauss curvature (S0f)/2,
Hf = Ricf (N,N) = 0 on Σ, ∂Σ consists of geodesics, and II(N,N) = 0 along ∂Σ. In par-
ticular, we can use Proposition 4.3 to construct a variation ϕ : (−s0, s0)×Σ→M of Σ such
that X = N on Σ, all the hypersurfaces Σs are f -stationary, and Ω := ϕ

(
(−s0, s0)× Σ

)
is an open neighborhood of Σ in M diffeomorphic to (−s0, s0)× Σ.

Now we show that ϕ does not increase the weighted area. We use the same notation
as in the proof of Theorem 4.8. Let us see that H ′f (s) > 0 for any s small enough, and
that equality for some s implies that Σs is totally geodesic and us is constant on Σs. By



FREE BOUNDARY STABILITY AND RIGIDITY IN MANIFOLDS WITH DENSITY 19

taking into account (4.4) and (4.7), we obtain

H ′f (s)
∫

Σs

1
us
das >

1
2

∫
Σs

(
|∇Σs

us|2

u2
s

+ Sf +Hf (s)2 + |σs|2
)
das(4.8)

+
∫
∂Σs

(Hf )∂M dls − 2πχ(Σs)

>
1
2

∫
Σs

Sf das +
∫
∂Σs

(Hf )∂M dls − 2πχ(Σs)

>
S0

2
Af (s)− 2πχ,

where we have applied the hypotheses Sf > S0f and (Hf )∂M > 0. If equality holds
in (4.8) for some s ∈ (−s0, s0), then Σs is totally geodesic and us is constant on Σs.
Moreover, by (4.5) we also have that the density f is constant on Σs.

Suppose first that S0 > 0 and Af (Σ) = 4π/S0. Since Σ is locally weighted area-
minimizing, then Af (s) > Af (0) in a small open interval J containing 0. Thus, equation
(4.8) gives us

H ′f (s)
∫

Σs

1
us
das >

S0

2
Af (Σ)− 2π = 0,

for any s ∈ J , and the claim is proved.

Suppose now that S0 < 0 and Af (Σ) = 4πχ/S0. We reason as in the proof of [24,
Thm. 2]. For any s ∈ (0, s0), we denote φ(s) :=

∫
Σs

(1/us) das and η(s) :=
∫

Σs
us (daf )s.

From the first variation formula in Lemma 3.2, equation (4.8) reads

(4.9) H ′f (s) >
S0

2φ(s)

∫ s

0

A′f (t) dt = − S0

2φ(s)

∫ s

0

Hf (t) η(t) dt.

Let C > 0 be the maximum value of the function φ(s)−1
∫ s

0
η(t) dt on [0, s0]. Fix a num-

ber ε > 0 such that −CS0 ε < 2. If we show that Hf (t) > 0 for any t ∈ [0, ε), then
we deduce from (4.9) that H ′f (s) > 0 for any s ∈ [0, ε). This proves the claim by ar-
guing similarly on some (ε′, 0]. Suppose that there is t0 ∈ (0, ε) with Hf (t0) < 0. Let
t∗ := inf B, where B := {t ∈ [0, t0] ; Hf (t) 6 Hf (t0)}. Note that t∗ 6 t0 < ε. Let us
assume t∗ > 0. By the definition of t∗ we have Hf (t) > Hf (t0) for any t ∈ [0, t∗] and
Hf (t0) = Hf (t∗). On the other hand, we apply the mean value theorem to find t1 ∈ (0, t∗)
such that H ′f (t1) = Hf (t∗)/t∗. From (4.9) we would obtain

Hf (t∗)
t∗

= H ′f (t1) > − S0

2φ(t1)

∫ t1

0

Hf (t) η(t) dt > −S0

2
Hf (t∗)

1
φ(t1)

∫ t1

0

η(t) dt

> −CS0

2
Hf (t∗) >

Hf (t∗)
ε

,

which is a contradiction since t∗ < ε. As a consequence, we would get t∗ = 0, and so 0 =
Hf (0) 6 Hf (t0) < 0, which is another contradiction.

Finally, the conclusions of both theorems follow as in the proof of Theorem 4.8. �

Remark 4.13. Following classical terminology, we say that a strongly f -stationary hy-
persurface Σ is strictly f -stable if the second derivative of the weighted area functional
satisfies A′′f (0) > 0 for any variation of Σ. Clearly, a strictly f -stable hypersurface is
locally weighted area-minimizing. In particular, all the results in this section hold for
strictly f -stable hypersurfaces.
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4. V. Bayle, Propriétés de concavité du profil isopérimétrique et applications, Ph.D. thesis, Institut
Fourier (Grenoble), 2003.

5. H. Bray, S. Brendle, and A. Neves, Rigidity of area-minimizing two-spheres in three-manifolds,

Comm. Anal. Geom. 18 (2010), no. 4, 821–830. MR 2765731 (2012a:53067)
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