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Abstract. We prove that the isoperimetric profile of a convex domain Ω with compact clo-
sure in a Riemannian manifold (Mn+1, g) satisfies a second order differential inequality that
only depends on the dimension of the manifold and on a lower bound on the Ricci curva-
ture of Ω. Regularity properties of the profile and topological consequences on isoperimetric
regions arise naturally from this differential point of view.

Moreover, by integrating the differential inequality, we obtain sharp comparison theorems:
not only can we derive an inequality that should be compared with Lévy-Gromov Inequality
but we also show that if Ric > nδ on Ω, then the profile of Ω is bounded from above by the
profile of the half-space Hn+1

δ in the simply connected space form with constant sectional
curvature δ. As consequence of isoperimetric comparisons we obtain geometric estimations
for the volume and the diameter of Ω, and for the first non-zero Neumann eigenvalue for the
Laplace operator on Ω.

1. Introduction

Let Ω be a domain (connected open set) with non-empty boundary of a Riemannian man-
ifold (Mn+1, g). The so-called partitioning problem in Ω consists on finding, for a given
V < vol(Ω), a minimum of the perimeter functional P(· ,Ω) in the class of sets in Ω that
enclose volume V . Here vol(E) is the (n + 1)-dimensional Hausdorff measure of a set E ⊆ M
and P(E,Ω) denotes the perimeter of E relative to Ω, which essentially measures the area
of ∂E ∩ Ω (see Section 2 for a precise definition). Solutions to the partitioning problem are
called isoperimetric regions or minimizers in Ω of volume V .

The partitioning problem is object of an intensive study. The first questions taken into
consideration were related to the existence and regularity of minimizers. In the light of stan-
dard results in Geometric Measure Theory [M1], inside a smooth domain Ω with compact
closure, minimizers do exist for any given volume and their boundaries are smooth, up to a
closed set of singularities with high Hausdorff codimension, (see Proposition 2.3 for a precise
statement). Recently, geometric and topological properties of minimizers have been studied
by A. Ros and E. Vergasta [RV] and P. Sternberg and K. Zumbrun [SZ2] inside a Euclidean
convex body, and by M. Ritoré and C. Rosales [RR] inside Euclidean cones. However, in
spite of the last advances, the complete description of isoperimetric regions has been achieved
only for certain convex domains such as half-spaces in the simply connected space forms, Eu-
clidean balls, Euclidean slabs, and Euclidean convex cones, among others. A beautiful survey
containing most of the results above, including recent progress and open questions is the one
by A. Ros [Ro].
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Much of the information concerning the partitioning problem is contained in the isoperi-
metric profile of Ω: the function IΩ(V ) which assigns to V the least-perimeter separation of
volume V in Ω. In this paper, assuming that Ω is a convex domain with compact closure in
(Mn+1, g), we prove regularity properties of the profile, connectivity results for minimizers
and for their boundaries, and above all, we obtain sharp lower and upper bounds for the
isoperimetric profile involving the infimum of the Ricci curvature of Ω.

We begin this work with a preliminary section where we introduce the notation and give
some basic results. For example, Proposition 2.1 is an adaptation to the partitioning problem
of a result by P. Bérard and D. Meyer [BM] in which it is shown that the isoperimetric profile
IΩ approaches asymptotically the profile of the half-space in Rn+1 for small volumes. We also
summarize existence and regularity results for isoperimetric regions in Proposition 2.3, and
state an analytic comparison result for the solutions of a differential inequality (Theorem 2.5)
that will be useful in Section 4.

In Section 3, inspired by previous results by C. Bavard and P. Pansu [BP], P. Sternberg
and K. Zumbrun [SZ2], F. Morgan and D. Johnson [MJ], and V. Bayle [Ba2], we prove
(Theorem 3.2) that the renormalized isoperimetric profile YΩ = I

(n+1)/n
Ω of a smooth convex

domain Ω with compact closure satisfies a second order differential inequality of the type

(1.1) Y ′′
Ω 6 C Y

(1−n)/(1+n)
Ω ,

where C is a constant depending on the dimension of the ambient manifold and on a lower
bound on the Ricci curvature over Ω.

The idea of the proof of (1.1) relies on a local comparison of YΩ with the renormalized
profile P (V )(n+1)/n associated to the deformation of a minimizer E -which exists by the com-
pactness of Ω- given by equidistant hypersurfaces to ∂E ∩Ω. Some technical difficulties arise
due to the possible presence in high dimensions of singularities in ∂E ∩ Ω. These difficulties
are solved by an approximation argument consisting in the construction of “almost parallel
variations” (Lemma 3.1). This scheme of proof was previously used in [MJ] and [Ba2] to get
a differential inequality for the isoperimetric profile of a closed Riemannian manifold, and in
[RR] to characterize isoperimetric regions in smooth convex cones. As in [RR], our proof
differs from those of [MJ] and [Ba2] in the presence of a boundary term involving the second
fundamental form of ∂Ω which can be controlled by using the convexity of Ω.

From the differential inequality (1.1), that yields concavity of the profile under the assump-
tion of non-negative Ricci curvature on Ω (Theorem 3.5), we derive regularity properties of the
profile (Proposition 3.7) and topological consequences related to the connectivity of minimiz-
ers and isoperimetric hypersurfaces (Propositions 3.11 and 3.9). Similar previous results for
closed Riemannian manifolds and for convex bodies in the Euclidean setting were established
in [BP], [MJ], [SZ2], [K] and [Ba2].

In Section 4 we use analytic arguments to obtain isoperimetric comparison theorems. As a
matter of fact, integration of the differential inequality (1.1) makes possible to compare the
isoperimetric profile of a smooth convex domain Ω with compact closure and Ric > nδ, with
an exact solution of the differential equation associated to (1.1) that satisfies either the same
initial conditions or the same boundary conditions. On the one hand we prove in Theorem
4.1 the isoperimetric inequality

(1.2) IΩ(V ) 6 IHn+1
δ

(V ), V ∈ [0, vol(Ω)],
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where Hn+1
δ is a half-space in the simply connected space form with constant sectional curva-

ture δ. In Remark 4.5 we indicate that the geometric arguments employed by F. Morgan
and D. Johnson in [MJ, Theorem 3.5] can be adapted to prove that (1.2) is also valid
for unbounded convex domains. In Theorem 4.6 we show that equality in (1.2) for some
V0 ∈ (0, vol(Ω)] implies that ∂Ω is a totally geodesic hypersurface of the ambient manifold,
and Ω has constant sectional curvature δ in a neighborhood of ∂Ω.

On the other hand, in Corollary 4.9 we deduce a lower bound for the profile that should
be compared with Lévy–Gromov inequality [Gr]. In precise terms, we prove that any Borel
set E contained in a smooth convex body Ω with Ric > nδ > 0, satisfies

P(E,Ω)
vol(Ω)

>
P(E∗, Hn+1

δ )
vol(Hn+1

δ )
,(1.3)

where E∗ ⊆ Hn+1
δ is a half-ball centered at ∂Hn+1

δ with

vol(E)
vol(Ω)

=
vol(E∗)

vol(Hn+1
δ )

.

Moreover, inequality (1.3) is sharp since equality for a proper set E ⊂ Ω implies that Ω is
isometric to Hn+1

δ .
Our isoperimetric inequalities in Section 4 can be used, as in [Ga] and [Ba2], to derive

comparison theorems for convex bodies involving geometric quantities such as the volume or
the diameter, see Theorem 2.7, Remark 4.2 and Theorem 4.13. Furthermore, by reproduc-
ing the symmetrization arguments in [BM, Théorème 5] we prove in Theorem 4.15 that if
Ric > nδ > 0 on Ω, then the lowest non-zero eigenvalue for the Laplace operator in Ω with
Neumann boundary condition is bounded from below by the one of the half-sphere Hn+1

δ of
radius 1/

√
δ, with equality if and only if Ω is isometric to Hn+1

δ .
Finally, we have added in a last section as an appendix a geometric proof of inequality

(1.2) for the case of a smooth convex body Ω in Rn+1.
As mentioned in [SZ2], in addition to the geometric interest of this work, we remark that

the partitioning problem can be linked with a well-studied variational question related to
phase transitions (see also [SZ1]).
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2. Preliminaries

2.1. The isoperimetric profile. Let Ω be a smooth domain (connected open set) with com-
pact closure Ω contained in a Riemannian manifold (Mn+1, g). The (n + 1)-dimensional and
the k-dimensional Hausdorff measures of a Borel set E ⊆ M will be denoted by vol(E) and
Hk(E) respectively. For any measurable set E ⊆ M , let P(E,Ω) be the De Giorgi perimeter
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of E relative to Ω, defined as

P(E,Ω) = sup
{∫

E
div Y dHn+1 : g(Y, Y ) 6 1

}
,

where Y is a smooth vector field over M with compact support contained in Ω, and div Y
is the divergence of Y [Ch2, p. 140]. If, for instance, E has C2 boundary, then P(E,Ω) =
Hn(∂E ∩ Ω) by the Gauss–Green theorem.

A set E ⊆ M is said to be of finite perimeter in Ω if P(E,Ω) < ∞. We refer to the reader
to [Gi], [Z] and [Ch3] for background about perimeter, sets of finite perimeter, and their use
in the context of Geometric Measure Theory.

The isoperimetric profile of Ω is the function IΩ : [0, vol(Ω)] → R+ ∪ {0} given by

IΩ(V ) = inf {P(E,Ω) : E ⊆ Ω, vol(E) = V },

where the infimum is taken over sets of finite perimeter in Ω. We define the renormalized
isoperimetric profile of Ω as the function

YΩ = I
(n+1)/n
Ω .

Through this paper we shall use the following basic properties of the isoperimetric profile

• IΩ is a non-negative function which only vanishes at V = 0 and V = vol(Ω).
• IΩ(V ) = IΩ(vol(Ω)− V ), V ∈ [0, vol(Ω)].
• IΩ is a lower semicontinuous function [Gi, Theorems 1.9 and 1.19].

The following proposition is an adaptation of a result by P. Bérard and D. Meyer [BM,
App. C], in which the cited authors show that the isoperimetric profile of a closed mani-
fold (Mn+1, g) (i.e., a compact Riemannian manifold without boundary) asymptotically ap-
proaches the profile of Rn+1 for small volumes.

Proposition 2.1. Let Ω be a smooth domain with compact closure and non-empty boundary
in a Riemannian manifold (Mn+1, g). Denote by Hn+1 the half-space {xn+1 > 0} in Rn+1.
Then, the asymptotic behaviour of the isoperimetric profile of Ω at the origin is

IΩ(V ) ∼
V→0
V >0

IHn+1(V ) = 2−1/(n+1) γn+1 V n/(n+1),

where γn+1 = Hn(Sn)/Hn+1(B(1))n/(n+1) stands for the (n+1)-dimensional Euclidean isoperi-
metric constant.

As a consequence, the right derivative of the renormalized profile at the origin is given by

(YΩ)′r(0) = 2−1/n γ
(n+1)/n
n+1 .

Proof. The only change with respect to the proof by P. Bérard and D. Meyer that must
be taken into account consists in proving a localization lemma as in [BM, p. 531] for any
small geodesic ball B centered at ∂Ω and intersected with Ω. In precise terms, we need to
show that, inside B ∩Ω, the isoperimetric inequality for the relative perimeter infinitesimally
behaves as in Hn+1. This property comes from the fact that B ∩ Ω is diffeomorphic to a
half-ball in Hn+1 centered at ∂Hn+1 with Lipschitz constants arbitrarily close to 1. Finally, a
compactness argument as in [BM] allows us to pass from the localization lemmae to a global
isoperimetric inequality. �
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Remark 2.2. The asymptotic behaviour in the proposition above provides upper and lower
bounds on the profile for small volumes. In fact, for any ε > 0, there exists V (Ω, ε) > 0 such
that

(1− ε) IHn+1(V ) 6 IΩ(V ) 6 (1 + ε) IHn+1(V ), whenever V 6 (Ω, ε).
The last inequalities and the ones given in [BM, App. C] imply that a set E in Ω such that
vol(E) = V and P(E,Ω) = IΩ(V ) for a small volume V , must meet the boundary of Ω.

Now, we introduce another notion of isoperimetric profile (see [Gr], [Ga] and [Ba2]), which
is sometimes more relevant in order to obtain comparison theorems. It is given by the function
hΩ : [0, 1] → R+ ∪ {0}, defined for all β in [0, 1] by

(2.1) hΩ(β) =
IΩ

(
β vol(Ω)

)
vol(Ω)

.

This point of view, which somehow corresponds to the choice of a probability measure on Ω,
will be considered in the proof of a Lévy-Gromov type inequality (Theorem 4.8).

2.2. Isoperimetric regions: existence and regularity. Let Ω be a smooth domain of a
Riemannian manifold (Mn+1, g). An isoperimetric region -or simply a minimizer - in Ω for
volume V ∈ (0, vol(Ω)) is a set E ⊆ Ω such that vol(E) = V and P(E,Ω) = IΩ(V ).

In the following proposition we summarize some results from Geometric Measure Theory
concerning the existence and regularity of isoperimetric regions in Ω.

Proposition 2.3 ([Gi], [GMT], [G1], [M2], [Bo]). Let Ω be a smooth domain with compact
closure in a Riemannian manifold (Mn+1, g). For any V ∈ (0, vol(Ω)) there is an open set
E ⊂ Ω which minimizes the perimeter relative to Ω for volume V . The boundary Λ = ∂E ∩ Ω
can be written as a disjoint union Σ ∪ Σ0, where Σ is the regular part of Λ and Σ0 = Λ − Σ
is the set of singularities. Precisely, we have

(i) Σ ∩ Ω is a smooth, embedded hypersurface with constant mean curvature.
(ii) If p ∈ Σ∩ ∂Ω, then Σ is a smooth, embedded hypersurface with boundary contained in

∂Ω in a neighborhood of p; in this neighborhood Σ has constant mean curvature and
meets ∂Ω orthogonally.

(iii) Σ0 is a closed set of Hausdorff dimension less than or equal to n− 7.
(iv) At every point q ∈ Σ0 there is a tangent minimal cone Cq ⊂ TqM different from a

hyperplane. The square sum |σ|2 = k2
1 + . . .+k2

n of the principal curvatures of Σ tends
to ∞ when we approach q from Σ.

In the preceding proposition the regular set Σ is defined as follows: for p ∈ Σ there is a
neighborhood W of p in Σ such that W is a smooth, embedded hypersurface without bound-
ary or with boundary contained in ∂Ω. Note that a consequence of the proposition above is
the absence of interior points in Σ meeting ∂Ω tangentially, see [G2].

Remark 2.4. The regular hypersurface Σ associated to a minimizer in Ω with large volume
need not meet the boundary of Ω. An example illustrating this situation can be found at the
end of Section 2 in [RR].

2.3. An analytic comparison result. Let f : I → R be a function defined on an open
interval. For any x0 ∈ I we denote by D2f(x0) the upper second derivative of f at x0, defined
by

(2.2) D2f(x0) = lim sup
h→0

f(x0 + h) + f(x0 − h)− 2f(x0)
h2

.
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The main tool that we shall employ in Section 4 to derive comparison theorems from dif-
ferential inequalities is the following technical result. A detailed proof is included in [Ba1,
App. C].

Theorem 2.5. Let f, g : [0, a] → R be continuous functions with positive values on (0, a).
Let H : R+ → R be the function H(x) = −αδx(2−α)/α, where δ ∈ R and α > 2. Suppose that
f satisfies the second order differential inequality

D2f(x) 6 H[f(x)], x ∈ (0, a),

while g is a C2-function that satisfies the differential equation

g′′(x) = H[g(x)], x ∈ (0, a).

Then, we have
(i) If f(0) = g(0) and f(a) = g(a), then f > g on [0, a]. Moreover, if f(x0) = g(x0) for

some x0 ∈ (0, a), then f = g on [0, a].
(ii) If f(0) = g(0) and the right derivatives at the origin verify f ′r(0) 6 g′r(0) < +∞, then

f 6 g on [0, a]. Moreover, if f(x0) = g(x0) for some x0 ∈ (0, a], then f = g on [0, x0].

The theorem above can be seen as a generalization of the fact that a concave function f
on [0, a] is pinched between any tangent line and the secant line passing through (0, f(0))
and (a, f(a)). Indeed, the philosophy of these comparisons is to pinch the solution of the
differential inequality between two exact solutions of the corresponding differential equation
with the same initial or boundary conditions.

2.4. Convex domains in Riemannian manifolds. The term “convex domain” is used in
different non-equivalent ways in the literature. We adopt the following definition:

Let Ω be a domain of a Riemannian manifold (Mn+1, g). We say that Ω is convex if any
two points p, q ∈ Ω can be joined by a minimizing geodesic of M which is contained in Ω. A
convex domain Ω with compact closure in M will be called a convex body.

The convexity of a smooth domain Ω implies the local convexity of ∂Ω, which means that
all the geodesics in M tangent to ∂Ω are locally outside of Ω. As R. Bishop proved ([Bi]),
the local convexity of ∂Ω is equivalent to an analytic condition (the so-called infinitesimal
convexity) involving the second fundamental form of ∂Ω. As a consequence, for a smooth
convex domain Ω of a Riemannian manifold, the second fundamental form IIp of ∂Ω with
respect to the inner normal vector is positive semidefinite at any p ∈ ∂Ω.

Remark 2.6. Most of the results of the paper in which the convexity of Ω is assumed are
also valid under the weaker condition that IIp is positive semidefinite at any p ∈ ∂Ω.

The following result is a standard application to the setting of convex bodies of two well-
known comparison theorems in Riemannian Geometry. It will be useful in order to show that
our isoperimetric inequalities in Section 4 are sharp.

Theorem 2.7. Let Ω be a smooth convex domain of a complete Riemannian manifold (Mn+1,

g). For δ > 0, denote by Hn+1
δ the (n + 1)-dimensional half-sphere of radius 1/

√
δ. If the

Ricci curvature of M satisfies Ric > nδ > 0 on Ω, then
(i) Ω is compact and diam(Ω) 6 diam(Hn+1

δ ) = π/
√

δ (Bonnet–Myers Theorem).
(ii) If ∂Ω 6= ∅, then vol(Ω) 6 vol(Hn+1

δ ) and equality implies that ∂Ω is totally geodesic in
M and Ω is isometric to Hn+1

δ (Bishop’s Theorem).
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Remark 2.8. In the theorem above we assume Ric > nδ > 0 only in Ω. In Section 4 we shall
see that the two geometric inequalities in Theorem 2.7 can be obtained by using isoperimetric
comparisons. In Theorem 4.13 we characterize the half-spheres as the only convex domains
for which equality in Theorem 2.7 (i) holds.

3. The differential inequality

Let Ω be a smooth convex body of a Riemannian manifold (Mn+1, g). Our main goal in
this section is to prove that the renormalized isoperimetric profile YΩ satisfies a differential
inequality as that as in (1.1). We shall then derive some immediate consequences related to
the regularity of the profile and the connectivity of isoperimetric regions in Ω.

Let us start with the proof of the differential inequality. As we pointed out in Section 1,
the idea of the proof consists in a local comparison of YΩ with the relative profiles associated
to “almost parallel variations” of a minimizer E in Ω for a fixed volume V0. These variations
will be constructed by using the following lemma

Lemma 3.1. Let E be an isoperimetric region inside a smooth domain Ω with compact clo-
sure in a Riemannian manifold (Mn+1, g). Denote by Σ the regular part of Λ = ∂E ∩ Ω.
Then, there is a sequence {ϕε : Σ → R}ε>0 of smooth functions with compact support in Σ,
such that

(i) 0 6 ϕε 6 1, ε > 0.
(ii) {ϕε} → 1 in the Sobolev space H1(Σ), that is

lim
ε→0

∫
Σ

ϕ2
ε dHn = P(E,Ω), lim

ε→0

∫
Σ
|∇ϕε|2 dHn = 0,

where ∇ϕε is the gradient of ϕε relative to Σ.
(iii) limε→0 ϕε(p) = 1, p ∈ Σ.

A complete proof of the lemma above when Ω is a Euclidean domain can be found in [SZ2,
Lemma 2.4]. The general case is treated in a similar way, see [MR] and [Ba2, Proposition
1.1] for further details. In [MR, Lemma 3.1] it was shown that the existence of {ϕε}ε>0 is
guaranteed for a bounded, constant mean curvature hypersurface Σ with a closed singular set
Σ0 = Σ− Σ such that Hn−2(Σ0) = 0 or consisting of isolated points.

Now, we can prove the main result of this section. Recall that D2f(x0) denotes the upper
second derivative of a function f at x0, as defined in (2.2).

Theorem 3.2. Let Ω be a smooth convex body of a Riemannian manifold (Mn+1, g). Suppose
that the Ricci curvature of M satisfies Ric > nδ on Ω. Then, the renormalized isoperimetric
profile YΩ = I

(n+1)/n
Ω verifies

(3.1) D2YΩ(V ) 6 −(n + 1) δ YΩ(V )(1−n)/(1+n), V ∈ (0, vol(Ω)).

If equality holds for some V0 ∈ (0, vol(Ω)) then the boundary Λ = ∂E ∩ Ω of any minimizer
E in Ω of volume V0 is a smooth, totally umbilical hypersurface such that

Ric(N,N) ≡ nδ on Λ and II(N,N) ≡ 0 on Λ ∩ ∂Ω,

where N is the unit normal to Λ which points into E, and II is the second fundamental form
of ∂Ω with respect to the inner normal.

Moreover, if Ω coincides with the half-space Hn+1
δ in the simply connected space form with

constant sectional curvature δ, then equality holds in (3.1) for any V ∈ (0, vol(Ω)).
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Proof. Fix V0 ∈ (0, vol(Ω)). By Proposition 2.3 there is a minimizer E in Ω of volume V0.
By the same result, the regular part Σ of Λ = ∂E ∩ Ω is a smooth, embedded hypersurface
which meets ∂Ω orthogonally. The mean curvature of Σ with respect to the unit normal N
pointing into E is a constant H0. The boundary Σ ∩ ∂Ω could be empty, see Remark 2.4. In
this case, we adopt the convention that the integrals over Σ ∩ ∂Ω are all equal to 0.

Consider a sequence of functions {ϕε}ε>0 as in Lemma 3.1. Fix ε > 0 and take a smooth
vector field Xε with compact support over M , such that Xε(q) ∈ Tq(∂Ω) whenever q ∈ ∂Ω
and Xε = ϕεN in Σ. The flow of diffeomorphisms {φt}t∈(−γ,γ) of Xε in Ω induces a variation
{Et = φt(E)}t of E through sets of finite perimeter contained in Ω. Call Pε(t) = P(Et,Ω)
and Vε(t) = vol(Et). By the first variation for perimeter and volume

P ′ε(0) =
∫
Σ

divΣ Xε dHn = −
∫
Σ

nH0 ϕε dHn,(3.2)

V ′
ε (0) =

∫
E

div Xε dHn+1 = −
∫
Σ

ϕε dHn,(3.3)

where divΣ is the divergence relative to Σ. As V ′
ε (0) < 0, we can write t as a function of the

volume V = V (t) for V close to V0; hence, we can define Pε(V ) = Pε[t(V )].
Now, consider the function gε(V ) = Pε(V )(n+1)/n defined on a neighborhood of V0. By

using the definition of isoperimetric profile and the fact that E is a minimizer, it is clear that

YΩ(V ) 6 gε(V ), YΩ(V0) = gε(V0),

from which we deduce

(3.4) D2YΩ (V0) 6 D2gε (V0) =
(

n + 1
n

)
Pε(V0)1/n

{
1
n
P ′ε(V0)2 Pε(V0)−1 + P ′′ε (V0)

}
.

Now, we shall compute the derivatives P ′ε(V0) and P ′′ε (V0). The first one is calculated by
using (3.2) and (3.3). We get

(3.5) P ′ε(V0) = P ′ε(0)V ′
ε (0)−1 = nH0.

On the other hand, the calculation of P ′′ε (V0) requires second variation of perimeter and
volume. By following the proof of [SZ2, Theorem 2.5] (in fact, the only change is that a new
term involving the Ricci curvature appears), it is obtained

P ′′ε (V0) =
(∫

Σ
ϕε dHn

)−2

(3.6)

×
[∫

Σ
(|∇ϕε|2 − (Ric(N,N) + |σ|2) ϕ2

ε) dHn −
∫
Σ∩∂Ω

II(N,N) ϕ2
ε dHn−1

]
,

where |σ|2 is the squared sum of the principal curvatures of Σ with respect to N , and II is
the second fundamental form of ∂Ω with respect to the inner normal.

Now, if we take lim sup in the equality above when ε → 0 and we use Lemma 3.1 together
with Fatou’s Lemma, we have

lim sup
ε→0

P ′′ε (V0) 6 −P(E,Ω)−2
[∫

Σ

(
Ric(N,N) + |σ|2

)
dHn +

∫
Σ∩∂Ω

II(N,N) dHn−1

]
(3.7)

6 −n (δ + H2
0 )P(E,Ω)−1,

where in the last inequality we have used the assumption on the Ricci curvature, the well-
known inequality |σ|2 > nH2

0 , and the convexity of Ω.
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Thus, if we pass to the limit in (3.4) and we use (3.5) together with (3.7), we deduce

D2YΩ(V0) 6
(

n + 1
n

)
P(E,Ω)1/n

{
nH2

0 P(E,Ω)−1 + lim sup
ε→0

P ′′ε (V0)
}

(3.8)

6 −(n + 1) δP(E,Ω)(1−n)/n = −(n + 1) δ YΩ(V0)(1−n)/(1+n),

and (3.1) is proved. Moreover, if equality holds in (3.8) then we also have equality in (3.7),
and so Σ is totally umbilical, Ric(N,N) ≡ nδ on Σ, and II(N,N) ≡ 0 on Σ∩∂Ω. Furthermore,
the singular set Σ0 = Λ− Σ is empty by Proposition 2.3 (iv) since |σ|2 is bounded.

Finally, suppose that Ω = Hn+1
δ . By reflecting with respect to ∂Hn+1

δ we get that any min-
imizer in Hn+1

δ is obtained by intersecting a geodesic ball B centered at ∂Hn+1
δ with Hn+1

δ .
As ∂B is a totally umbilical hypersurface and ∂Hn+1

δ is totally geodesic, we have equality in
(3.7). On the other hand, equality holds in the first inequality of (3.8) since YHn+1

δ
equals the

renormalized profile P(V )(n+1)/n given by parallel hypersurfaces to ∂B ∩Hn+1
δ . �

Remark 3.3. By using the profile hΩ defined in (2.1) we easily see that Theorem 3.2 is also
valid for the renormalized profile yΩ = h

(n+1)/n
Ω . In particular,

(3.9) D2yΩ(β) 6 −(n + 1) δ yΩ(β)(1−n)/(1+n), β ∈ (0, 1),

with equality for all β ∈ (0, 1) when Ω coincides with Hn+1
δ (δ > 0).

Remark 3.4. Let (Mn+1, g) be a closed Riemannian manifold with Ric > nδ. Then, M
can be seen as a convex body Ω with ∂Ω = ∅, and the proof of (3.1) remains valid with the
only change that the terms involving Σ ∩ ∂Ω vanish. With a similar proof, V. Bayle [Ba2,
Theorem 1.1] proved that (3.1) holds for the renormalized profile yM = h

(n+1)/n
M . Another

type of differential inequality for the isoperimetric profile IM was previously established by
F. Morgan and D. Johnson [MJ, Proposition 3.3].

The remainder of this section is devoted to deduce some immediate consequences of The-
orem 3.2.

One of the easiest and most obvious applications of the differential inequality (3.1) is the
following theorem. The proof only uses the fact that a lower semicontinuous function on an
interval f : I → R such that D2f 6 0 in the interior of I must be concave ([Ba1]).

Theorem 3.5. Let Ω be a smooth convex body of a Riemannian manifold (Mn+1, g) with non-
negative Ricci curvature. Then, the renormalized profile of Ω is concave. As consequence, the
isoperimetric profile IΩ is concave and, therefore, increasing on [0, vol(Ω)/2].

Remark 3.6. The concavity of the profile of a smooth convex body Ω ⊂ Rn+1 was obtained
by P. Sternberg and K. Zumbrun [SZ2, Theorem 2.8]. The observation that, in fact, the
renormalized profile of Ω ⊂ Rn+1 is concave is due to E. Kuwert [K].

Now, we generalize to the setting of convex bodies the regularity properties obtained for
the isoperimetric profile of a closed Riemannian manifold (see [BP], [MJ] and [Ba2]). As
an analytic outcome of Theorem 3.5 we have that, under non-negative Ricci curvature, the
isoperimetric profile of Ω has the regularity properties of concave functions. In the following
proposition we show that no assumption on the Ricci curvature is needed.

Proposition 3.7. Let Ω be a smooth convex body of a Riemannian manifold (Mn+1, g). Then
the renormalized isoperimetric profile YΩ has left and right derivatives satisfying

(YΩ)′l(V ) > (YΩ)′r(V ), V ∈ (0, vol(Ω)).
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As a consequence, (YΩ)′l(vol(Ω)/2) is non-negative. Moreover, YΩ is differentiable on the
interval (0, vol(Ω)) except on an at most countable set.

As to the isoperimetric profile IΩ, it has left and right derivatives for every V in
(
0, vol(Ω)

)
,

such that
(IΩ)′l(V ) > nHE > (IΩ)′r(V ),

where HE is the inward mean curvature associated to a minimizer E in Ω of volume V . As a
consequence, (IΩ)′l(vol(Ω)/2) is non-negative. Furthermore, IΩ is differentiable on

(
0, vol(Ω)

)
except on an at most countable set.

Proof. The regularity properties and the inequality between the side derivatives come from
the differential inequality (3.1), which implies that locally around V0 ∈ (0, vol(Ω)) the renor-
malized profile YΩ is concave, up to the addition of a constant times (V − V0)2. Now fix
V0 ∈ (0, vol(Ω)) and take a minimizer E in Ω of volume V0. Let P(V ) be the relative profile
associated to an almost parallel variation of E as constructed in the proof of Theorem 3.2. It
is obvious that IΩ(V ) 6 P(V ) for V close to V0, and IΩ(V0) = P(V0). As P ′(V0) = nHE (see
(3.5)) we deduce that (IΩ)′l(V0) > nHE > (IΩ)′r(V0). �

Remark 3.8. The asymptotic behaviour of the profile given in Proposition 2.1 allows us to
deduce the following consequences from Proposition 3.7

(i) IΩ is continuous on [0, vol(Ω)].
(ii) limV→0 (IΩ)′r(V ) = +∞.
(iii) The inward mean curvature associated to a minimizer in Ω explodes when the enclosed

volume tends to zero.

We finish this section by showing some topological restrictions related to the connectivity
of minimizers inside a convex body. We derive them by using a well-known argument (see
[SZ2] and [MJ]), which relies on the second variation formula of perimeter (3.6).

Proposition 3.9. Let Ω be a smooth convex body of a Riemannian manifold (Mn+1, g) such
that Ric > nδ on Ω. Denote by II the second fundamental form of ∂Ω with respect to the
inner normal. Let E be an isoperimetric region in Ω, Σ the regular part of ∂E ∩ Ω, and N
the normal to Σ pointing into E. Then

(i) If δ > 0, then Σ is connected.
(ii) If δ = 0 and Σ consists of more than one component, then Σ is totally geodesic and

we have Ric(N,N) ≡ 0 in Σ and II(N,N) ≡ 0 in Σ ∩ ∂Ω. As a consequence, if Σ is
non-connected, and Ω is strictly convex in the sense that II > 0, then Σ ∩ ∂Ω = ∅.

(iii) If δ 6 0, then there exists V1 ∈ (0, vol(Ω)) such that Σ is connected if vol(E) 6 V1.

Proof. Call V0 = vol(E) and denote by H0 the mean curvature of Σ with respect to N . Let
Σ′ be a component of Σ and {ϕε} ⊂ C∞

0 (Σ′) a sequence as in Lemma 3.1. By following the
proof of Theorem 3.2 we consider almost parallel variations of E and the associated perimeter
functions Pε(V ). Call α(V0) = lim supε→0 P ′′ε (V0). From (3.7) we know that

(*) α(V0) 6 −n (δ + H2
0 )P(E,Ω)−1,

due to the hypothesis on the Ricci curvature, the convexity of Ω and the inequality |σ|2 > nH2
0 .

We assert that α(V0) < 0 implies that Σ is connected. Otherwise, we would use almost
parallel variations with ε ≈ 0 to expand one component Σ1 and shrink another one Σ2 so
that the resulting variation preserves volume while reducing perimeter, see [SZ2, Theorem
2.6] for details; this would give us a contradiction with the minimality of E.
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Now we distinguish two cases. If δ > 0, then α(V0) 6 0 and an easy discussion of equality
cases in (*) proves the claim. If δ 6 0, then the explosion of the mean curvature for small
volumes (Remark 3.8 (iii)) yields the existence of V1 such that α(V ) < 0 for V ∈ [0, V1]. �

Remark 3.10. Topological restrictions on isoperimetric hypersurfaces inside a Euclidean con-
vex body were obtained by A. Ros and E. Vergasta [RV] and by P. Sternberg and K. Zumbrun
[SZ2]. On the one hand, statement (ii) in the proposition above is proved in [SZ2, Theorem
2.6] for a convex body Ω ⊂ Rn+1. Furthermore, it is shown that strict convexity of Ω implies
that Σ is connected. We must point out that, in general, this cannot be achieved when Ω is
not a Euclidean domain since Σ∩ ∂Ω could be empty, see Remark 2.4. On the other hand, in
[RV, Theorem 5] some conditions on the genus g and the number r of boundary components
of Σ are obtained when Ω ⊂ R3. In precise terms, they proved that the only possible values
for g and r are

(i) g = 0 and r = 1, 2 or 3;
(ii) g = 2 or 3 and r = 1.

It has been recently conjectured that an isoperimetric hypersurface inside a strictly convex
body of R3 must be homeomorphic to a disk ([Ro]).

Let Ω be a smooth convex body of a Riemannian manifold and let nδ be a lower bound
on the Ricci curvature of Ω. By Proposition 3.9 we have that a minimizer E in Ω is con-
nected when δ > 0, or when δ 6 0 and vol(E) is small enough. At first, the second variation
of perimeter is not sufficient, in the case δ 6 0, to discard a minimizer with finitely many
components bounded by totally geodesic hypersurfaces. However, by using that the profile is
concave when δ = 0 we can prove

Proposition 3.11. Let Ω be a smooth convex body of a Riemannian manifold with non-
negative Ricci curvature. Then, isoperimetric regions in Ω are connected.

Proof. Suppose that E is a minimizer of volume V0 ∈ (0, vol(Ω)) and that E1 is a connected
component of E with volume V1 < V0. By the definition of isoperimetric profile and the fact
that the set of singularities in ∂E ∩ Ω does not contribute to perimeter, we get

IΩ(V0) = P(E,Ω) = P(E1,Ω) + P(E − E1,Ω) > IΩ(V1) + IΩ(V0 − V1).

On the other hand, the concavity of YΩ (Theorem 3.5) gives us

YΩ(V0) 6 YΩ(V1) + YΩ(V0 − V1),

and so, as IΩ(V1) and IΩ(V0 − V1) are positive, and since the function x 7−→ x
n

n+1 is strictly
concave, we deduce

IΩ(V0) < IΩ(V1) + IΩ(V0 − V1),
which leads us to a contradiction. This proves that V1 = V0, and E is therefore connected. �

4. Comparison theorems

In this section, we shall integrate the differential inequality (3.1) in order to prove com-
parison theorems for the isoperimetric profile of a smooth convex body Ω in a Riemannian
manifold (Mn+1, g). The underlying philosophy of these results consists in using the analytic
Theorem 2.5 to compare a profile f , which can be YΩ or the function yΩ defined in Remark
3.3, with a solution g of the differential equation associated to (3.1) having the same initial
conditions or the same boundary values as f . In the first case we shall obtain an upper bound
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for the profile IΩ, while in the second one, we shall deduce a lower bound for hΩ that can be
interpreted as a Lévy-Gromov type inequality. We must remark that the two comparisons are
quite different although they arise from the same differential inequality. A detailed analysis
of equality cases will allow us to deduce global geometric consequences on Ω.

Through this section we also illustrate how to use our isoperimetric inequalities to de-
duce other geometric an analytic comparisons. In this way, we give alternative proofs of
the inequalities in Theorem 2.7, and we characterize the half-spheres as the only convex do-
mains for which equality in Theorem 2.7 (i) holds. Finally, we prove a comparison result for
the first non-zero Neumann eigenvalue of the Laplace operator on Ω that can be seen as a
generalization of the Obata–Lichnerowicz theorem [Ch, Theorem 9, p. 82].

4.1. Upper bounds on the isoperimetric profile.

Theorem 4.1. Let Ω be a smooth convex body with non-empty boundary of a complete Rie-
mannian manifold (Mn+1, g). Suppose that the Ricci curvature of M satisfies Ric > nδ on
Ω. Then

(4.1) IΩ(V ) 6 IHn+1
δ

(V ), V ∈ [0, vol(Ω)],

where Hn+1
δ is a half-space in the (n + 1)-dimensional simply connected space form with con-

stant sectional curvature δ.
If equality holds in (4.1) for some V0 ∈ (0, vol(Ω)], then IΩ = IHn+1

δ
on [0, V0], and the

boundary ∂E ∩ Ω of any minimizer E in Ω of volume V ∈ (0, V0) is a smooth, totally um-
bilical hypersurface. Moreover, if V0 = vol(Ω) (which implies δ > 0), then Ω is isometric
to Hn+1

δ .

Proof. The comparison arises from the fact that a continuous solution of the differential in-
equality (3.1) is bounded from above by a solution of the differential equation

(4.2) f ′′ = −(n + 1) δ f (1−n)/(1+n)

with the same initial conditions (Theorem 2.5). Then, by using that the renormalized profile
of Hn+1

δ satisfies (4.2) (see Theorem 3.2) and taking into account the asymptotic behaviour
of the renormalized profile YΩ at the origin (Proposition 2.1), we obtain

(4.3) YΩ(V ) 6 YHn+1
δ

(V ), V ∈ [0,min{vol(Ω), vol(Hn+1
δ )}].

From the inequality above we get (4.1) once we show that vol(Ω) 6 vol(Hn+1
δ ). This volume

comparison is trivial if δ 6 0 while in the case δ > 0, the opposite inequality would allow
us to deduce from (4.3) that YΩ(vol(Hn+1

δ )) 6 0, which is a contradiction since the profile is
positive in (0, vol(Ω)).

Finally, if both profiles coincide at V0 ∈ (0, vol(Ω)] then they must coincide in [0, V0] by
Theorem 2.5. The umbilicality of a minimizer of volume V < V0 follows from the discussion,
given in Theorem 3.2, of equality cases in (3.1). If V0 = vol(Ω), then vol(Ω) = vol(Hn+1

δ ) and
Ω is isometric to Hn+1

δ by Theorem 2.7 (ii). �

Remark 4.2. Note that we have given another proof of the volume comparison vol(Ω) 6
vol(Hn+1

δ ) of Theorem 2.7 (ii) by using the isoperimetric inequality (4.3).

Remark 4.3. When n = 1 the differential inequality (3.1) turns out to be linear and The-
orem 4.1 follows since the function E(V ) = YΩ(V ) − YH2

δ
(V ) is concave on [0, vol(Ω)], and
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the tangent line at the origin coincides with the x-axis. After an explicit calculation of YH2
δ
,

inequality (4.1) reads

I2
Ω(V ) 6 V (2π − δV ), V ∈ [0, vol(Ω)].

Remark 4.4. For a closed Riemannian manifold (Mn+1, g) with Ric > nδ, the integration
of the differential inequality (3.1) would give us the comparison

(4.4) IM 6 IMn+1
δ

, V ∈ [0, vol(M)],

where Mn+1
δ stands for the (n + 1)-dimensional simply connected space form with constant

sectional curvature δ. This result was previously proved by F. Morgan and D. Johnson [MJ,
Theorem 3.4].

Remark 4.5. Inequality (4.1) is also valid for a smooth, unbounded, convex domain Ω
with non-empty boundary and Ric > nδ. This can be proved by showing, as was done for
closed Riemannian manifolds in [MJ, Theorem 3.5], that the perimeter in Ω of a “half-ball”
B = Ω ∩ B(p, r) centered at a point p ∈ ∂Ω is less than or equal to the area of the geodesic
half-ball B̃ in Hn+1

δ of the same volume, with equality only if B is isometric to B̃ and ∂Ω is
geodesic at p. The arguments in the proof by F. Morgan and D. Johnson rely on comparison
theorems involving the volume of metric balls ([Ch2, Theorem 3.9]) and the area of metric
spheres ([Ch2, Proposition 3.3]). These theorems do not use the compactness of the ambient
manifold and can be easily generalized to our setting.

This alternative proof of (4.1) also allows us to deduce geometric consequences on Ω when
we have equality in (4.1). We summarize them in the next result

Theorem 4.6. Let Ω be a smooth convex domain with Ric > nδ in a complete Riemannian
manifold (Mn+1, g). Then

(i) If Ω has non-empty boundary then (4.1) holds, and equality for some V0 ∈ (0, vol(Ω)]
implies that ∂Ω is totally geodesic in M and Ω has constant sectional curvature δ in
a neighborhood of ∂Ω.

(ii) If ∂Ω = ∅, then (4.4) holds, and equality for some V0 ∈ (0, vol(Ω)] implies that M
is isometric to a quotient of the simply connected space form Mn+1

δ with constant
sectional curvature δ.

Remark 4.7. In general, we cannot improve statement (i) in the theorem above to the
stronger conclusion that equality in (4.1) for some V0 implies that Ω has constant sectional
curvature δ. For example, denote by Ω the domain obtained from attaching the half-sphere of
S2 centered at the north pole to the compact cylinder S1× [−1, 0] through the circle S1×{0}.
It is clear that IΩ = IH2

0
for small values; however, Ω is not a flat domain.

4.2. A Lévy-Gromov type inequality for convex bodies. Let (Mn+1, g) be a closed
Riemannian manifold with Ric > nδ > 0. Denote by hM the profile of M as defined in (2.1).
The Lévy-Gromov inequality [Gr] states that

(4.5) hM (β) > hMn+1
δ

(β), β ∈ [0, 1],

where Mn+1
δ is an (n + 1)-dimensional sphere of radius 1/

√
δ. Moreover, if equality holds in

(4.5) for some β ∈ (0, 1), then M is isometric to Mn+1
δ .

Inequality (4.5) can be obtained by integrating a differential inequality similar to (3.1), see
[Ba1]. With the same technique, we generalize (4.5) to the setting of convex bodies.
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Theorem 4.8. Let Ω be a smooth convex body of a Riemannian manifold (Mn+1, g). Suppose
that the Ricci curvature of M over Ω satisfies Ric > nδ > 0. Then,

(4.6) hΩ(β) > hHn+1
δ

(β), β ∈ [0, 1],

where Hn+1
δ is an (n + 1)-dimensional half-sphere of radius 1/

√
δ.

Moreover, if Ω has non-empty boundary then equality holds in (4.6) for some β0 ∈ (0, 1) if
and only if Ω is isometric to Hn+1

δ .

Proof. The inequality follows from the fact, given in Theorem 2.5 (i), that any function sat-
isfying the differential inequality (3.9) is bounded from below by an exact solution of the
corresponding differential equation with the same boundary values. Furthermore, if we have
equality for some β0 ∈ (0, 1), then hΩ = hHn+1

δ
on [0, 1], and by the asymptotic behaviour of

hΩ at the origin (Proposition 2.1), we deduce that vol(Ω) = vol(Hn+1
δ ). From statement (ii)

in Theorem 2.7 we conclude that Ω is isometric to Hn+1
δ . �

The preceding result can be given in the following alternative form

Corollary 4.9. Let Ω be a smooth convex body of a Riemannian manifold (Mn+1, g). Sup-
pose that the Ricci curvature of M over Ω satisfies Ric > nδ > 0. Then, for any Borel set
E ⊆ Ω, we have

P(E,Ω)
vol(Ω)

>
P(E∗, Hn+1

δ )
vol(Hn+1

δ )
,

where E∗ ⊆ Hn+1
δ is a geodesic half-ball centered at ∂Hn+1

δ such that

vol(E)
vol(Ω)

=
vol(E∗)

vol(Hn+1
δ )

.

Moreover, if Ω has non-empty boundary and equality holds for some set E ⊆ Ω with
vol(E) ∈ (0, vol(Ω)), then Ω is isometric to an (n+1)-dimensional half-sphere of radius 1/

√
δ.

Remark 4.10. Let hC(Ω) be the Cheeger isoperimetric constant of a smooth convex body
Ω of a Riemannian manifold (Mn+1, g), defined by

hC(Ω) = inf
{ P(E,Ω)

min {vol(E), vol(Ω \ E)}
: vol(E) ∈ (0, vol(Ω))

}
.

Note that

hC(Ω) = inf
{

hΩ(β)
min {β, 1− β}

: β ∈ (0, 1)
}

,

and so, if the Ricci curvature of M is non-negative on Ω, we deduce by the concavity of the
profile (Theorem 3.5)

hC(Ω) = 2 hΩ(1/2),
which yields hC(Ω) > hC(Hn+1

δ ) when Ric > nδ > 0 in Ω by (4.6).
Now, by reproducing the arguments in [Ba2] (see also [Ba1]), we can refine Theorem 4.8,

so as to get, under the same assumption on the Ricci curvature,

hΩ(β) >
[

hC(Ω)
hC(Hn+1

δ )

] 1
n+1

hHn+1
δ

(β), β ∈ [0, 1].(4.7)

Moreover, if there is β0 ∈ (0, 1) such that (4.7) is an equality, then Ω is isometric to Hn+1
δ .
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4.3. Some consequences of Theorem 4.8. We first show how to use Theorem 4.8 to give
a characterization of equality cases in Theorem 2.7 (i). We need a previous result (see [Ga]
for closed Riemannian manifolds), linking the diameter of a domain Ω and the profile hΩ.

Lemma 4.11. The diameter of a smooth domain Ω of a complete Riemannian manifold
(Mn+1, g) satisfies

diam(Ω) 6
∫ 1

0

dβ

hΩ(β)
,

with equality when Ω coincides with an (n + 1)-dimensional half-sphere.

Proof. Suppose that vol(Ω) < ∞ (in other case hΩ ≡ 0). If Ω is unbounded, then choose any
point p0 ∈ Ω. If Ω is bounded, fix a point p0 ∈ Ω such that dist(p0, p1) = diam(Ω) for some
p1 ∈ Ω. Denote by St and Bt the metric sphere and the metric open ball in M centered at p0

with radius t > 0. By the coarea formula [Ch3, Corollary I.3.1], the volume of a set E ⊆ M
can be computed as

vol(E) =
∫ +∞

0
Hn(E ∩ St) dt,

and so the function β(r) = vol(Ω ∩ Br)/ vol(Ω) is absolutely continuous on [0,diam(Ω)] and
satisfies

(4.8) β′(r) =
Hn(Ω ∩ Sr)

vol(Ω)
>
P(Ω ∩Br,Ω)

vol(Ω)
> hΩ(β(r)),

for almost all r ∈ [0,diam(Ω)], with equality when Ω coincides with a half-sphere. The proof
finishes by integrating in (4.8). �

Remark 4.12. The asymptotic behaviour of hΩ at the origin (Proposition 2.1) ensures that
the upper bound on the diameter given in the lemma above is finite when Ω is bounded.

As a consequence of Lemma 4.11 and Theorem 4.8 we can prove for convex bodies the
analogous of the well-known Topogonov–Cheng theorem [Ch2, Theorem 3.11] for closed
Riemannian manifolds. Note that the following result is not a direct consequence of the
aforementioned one for closed manifolds since we are assuming that Ric > nδ > 0 only in Ω.

Theorem 4.13. Let Ω be a smooth convex body with non-empty boundary of a Riemannian
manifold (Mn+1, g). If the Ricci curvature of M satisfies Ric > nδ > 0 on Ω, then

diam(Ω) 6
π√
δ
,

and equality holds if and only if Ω is isometric to a half-sphere of radius 1/
√

δ.

Remark 4.14. By following the arguments in [Ba2, Corollary 3.7 and Theorem 4.3] we could
say that, for a smooth convex body Ω with non-empty boundary and Ric > nδ > 0, having
a diameter close to π/

√
δ (resp. a volume close to vol(Hn+1

δ )) is equivalent to the fact that
hΩ − hHn+1

δ
is uniformly close to 0 on [0, 1] (resp. hΩ/hHn+1

δ
is uniformly close to 1 on (0, 1)).

This means that almost maximality of the diameter or almost maximality of the volume both
entail, in certain sense, almost minimality of the profile.

We finish this section with an eigenvalues comparison theorem. The application of an
isoperimetric inequality to obtain eigenvalues estimates was first given by G. B. Faber and
E. Krahn for smooth Euclidean domains with compact closure ([Ch, Theorem 2, p. 87]).
In [BM] and [BBG] it is shown how the ideas of G. B. Faber and E. Krahn, together with
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Lévy–Gromov inequality (4.5), lead to sharp estimates for the first eigenvalue of the Laplace
operator with Dirichlet boundary condition on a smooth, bounded domain of a complete Rie-
mannian manifold (Mn+1, g) with Ric > nδ > 0. Other estimates for Dirichlet eigenvalues
obtained in a similar way can be found in [Ga] and [Ba2].

In the setting of a smooth convex domain Ω with ∂Ω 6= ∅, the fact that isoperimetric hyper-
surfaces in the model Hn+1

δ intersect the boundary orthogonally, seems to indicate that the
Neumann boundary condition on ∂Ω is more appropriated if we want to derive an eigenvalues
comparison from inequality (4.6). In fact, we can prove

Theorem 4.15. Let Ω be a smooth convex body with non-empty boundary of a complete
Riemannian manifold (Mn+1, g). If the Ricci curvature of M satisfies Ric > nδ > 0 on Ω,
then

λN
1 (Ω) > λN

1 (Hn+1
δ ) = (n + 1) δ,(4.9)

where the notation λN
1 (Ω) stands for the lowest non-zero eigenvalue of the Laplace operator

on Ω with Neumann boundary condition on ∂Ω. Moreover, if (4.9) is an equality, then Ω is
isometric to a half-sphere Hn+1

δ of radius 1/
√

δ.

Proof. We give a brief desciption of the proof, which follows the symmetrization argument in
[BM, Théorème 5]. For any non-trivial function u ∈ C∞(Ω), denote by RΩ(u) the Rayleigh
quotient of u, given by

RΩ(u) =
( ∫

Ω
|∇u|2 dHn+1

) ( ∫
Ω

u2 dHn+1

)−1

.

Due to the variational characterization of Neumann eigenvalues there exists a smooth, mean
zero function u on Ω, such that RΩ(u) = λN

1 (Ω) and ∂u/∂ν = 0 on ∂Ω, where ν is the
inward normal vector to ∂Ω. Suppose that u has finitely many non-degenerate critical points
(condition (ND)). The symmetrization technique allows us to construct, by using a suitable
family of concentric half-balls in Hn+1

δ centered at a fix boundary point, a function u∗ defined
on Hn+1

δ such that

(i) u∗ is a non-trivial Sobolev function on Hn+1
δ .

(ii) u∗ has mean zero over Hn+1
δ .

(iii) RΩ(u) > RHn+1
δ

(u∗) with equality if and only if Ω is isometric to Hn+1
δ (here is the

point where Theorem (4.8) is used).

By using statement (iii) and the variational characterization of Neumann eigenvalues, the
proof of the theorem follows.

If u does not satisfy condition (ND), then we get (4.9) by approximation since λN
1 (Ω) is the

limit of a sequence {RΩ(un)}n∈N, where each un has mean zero and satisfies condition (ND).
In this situation, the discussion of the equality case is not so obvious; we appeal to [BM, p.
520]. �

Remark 4.16. In [Re, Theorem 4], R. Reilly proved that Theorem 4.15 is valid when work-
ing with the first eigenvalue of the Laplace operator on Ω with Dirichlet boundary condition
on ∂Ω. In [E, Theorem 4.3] it is shown that, in fact, inequality (4.9) can be obtained as
a consequence of Reilly’s formula. We remark that inequality (4.9) can also be deduced by
using Bochner’s formula ([Ch, p. 83]).
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Remark 4.17. By using inequality (4.7) instead of (4.6) in the proof of Theorem 4.15, we
obtain

λN
1 (Ω) >

[
hC(Ω)

hC(Hn+1
δ )

] 2
n+1

λN
1 (Hn+1

δ ),

with equality if and only if Ω is isometric to Hn+1
δ .

5. Appendix: an alternative proof of inequality (4.1) in the euclidean case

Here we give a geometric proof of the fact that the isoperimetric profile of a convex body
Ω ⊂ Rn+1 is bounded from above by the profile of the half-space Hn+1 = {xn+1 > 0}. The
proof relies on the fact that the local convexity of a domain Ω around a boundary point
implies IΩ 6 IHn+1 for small volumes.

Proposition 5.1. Let Ω be a smooth domain in Rn+1. If Ω has a local supporting hyperplane
at a point x ∈ ∂Ω, then there exists V0 > 0 such that IΩ(V ) 6 IHn+1(V ), whenever V ∈ [0, V0].

Proof. We follow the proof in [RR, Proposition 3.6]. Denote by P(r) and V (r) respectively
the perimeter in Ω and the volume of the ball Br of radius r > 0 centered at x intersected
with Ω. Let Ṽ (r) be the volume of the cone subtended by ∂Br ∩Ω and vertex at x. We have
the relation

P(r) = (n + 1)
Ṽ (r)

r
.

On the one hand, since Ω is locally convex around x, we have V (r) > Ṽ (r) for r small, so
that

P(r) = (n + 1)
Ṽ (r)

r
6 (n + 1)

V (r)
r

.

On the other hand, if Pe(r) and Ve(r) respectively are the area and the volume of a half-ball
in Hn+1 of radius r > 0, we have

Pe(r)
Ve(r)

=
n + 1

r
,

and so
P(r)
V (r)

6
Pe(r)
Ve(r)

.

Since V (r) 6 Ve(r) due to the local convexity of Ω around x, we finally get

P(r)
V (r)n/(n+1)

=
P(r)
V (r)

V (r)1/(n+1) 6
Pe(r)
Ve(r)

Ve(r)1/(n+1) =
Pe(r)

Ve(r)n/(n+1)
= dn,

where dn is the constant that appears in the expression of the isoperimetric profile of the
half-space IHn+1(V ) = dnV n/(n+1).

Hence, for small r, we obtain the relation P(r) 6 IHn+1(V (r)), which proves the claim. �

Proof of inequality (4.1): Let Ω be a smooth convex body in Rn+1. As the renormalized
profile YHn+1 is linear as function of V , and YΩ is concave (Theorem 3.5), the proof trivially
follows from Proposition 5.1.

Remark 5.2. Though we have succeeded in comparing the profiles for small volumes with
geometric arguments, the global comparison has required global analytic properties of the
profile.
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