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Abstract. We consider the isoperimetric problem of minimizing perimeter for given

volume in a strictly convex domain Ω ⊂ R
n+1 and prove that, if Ω is rotationally sy-

mmetric about some line, then any solution to this problem must be convex.

1. Introduction

In this paper we consider the problem of minimizing perimeter for given volume in a

convex set. The precise situation is the following. Let Ω ⊂ R
n+1 be a bounded convex

open set. By an isoperimetric region -or simply a minimizer- in Ω we mean a set E ⊆ Ω

satisfying the condition

P (E) 6 P (E ′),

among all sets E ′ ⊆ Ω with |E ′| = |E|. Here P (·) refers to perimeter in R
n+1 (see Section

2) and | · | denotes the (n + 1)-dimensional Lebesgue measure.

It should be remarked that this problem is considerably different from the free boundary

one, in which the functional to minimize for given volume is the perimeter P (·,Ω) relative

to Ω. This was treated for instance in [Gr], [RV] and [SZ].

The classical isoperimetric inequality in R
n+1 implies that an isoperimetric region with

volume 0 < |E| 6 v0 must be a ball, where v0 is the volume of a largest ball in Ω. The

existence of isoperimetric regions for any given volume is solved in the context of sets of

finite perimeter, see [G, Chapter 1]. Regularity questions have been studied by Gonzalez,

Massari and Tamanini [GMT] and by Stredulinsky and Ziemer [SZi]. They have proved

that a minimizer E satisfies that ∂E ∩ Ω is a smooth hypersurface with constant mean

curvature H0 off of a singular closed set of small Hausdorff dimension. Moreover, if ∂Ω is

C2 it was shown in [SZi] that ∂E is C1,1 in some neighborhood of each point in ∂E ∩ ∂Ω,

and the mean curvature H of ∂E with respect to the inner normal satisfies H 6 H0, H
n-

almost everywhere on ∂E. Here Hn(·) denotes the n-dimensional Hausdorff measure in

R
n+1.
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Other important questions about isoperimetric regions are related to geometric and topo-

logical properties. We shall deal with the problem of determine whether an isoperimetric

region in Ω is convex.

If Ω ⊂ R
2 this fact is true, and can be easily proved by using that the convex hull

of a connected, non convex set, decreases boundary length while increases volume. For

this reason, if a connected minimizer were non convex, one would be able to contract its

convex hull to obtain a set in Ω with the same volume and less perimeter, a contradiction.

However, this behaviour of the convex hull does not hold in higher dimensions; we can see

this on a standard embedded torus in R
3, where the circle in the xy plane has radius 1,

and the rotated circle perpendicular to the xy plane has radius r � 1 ([Ch, p. 13]).

Assuming only that Ω is a bounded convex domain, the convexity of any minimizer is

an open question in R
n+1, n > 2.

In [SZi], under the further hypothesis that Ω satisfies a “great circle condition”, it is

proved that any isoperimetric region is convex. Nestedness, uniqueness and regularity

results when Ω is not C2 are also established. The great circle condition means that a

largest open ball B in Ω has a great circle contained in ∂Ω. A great circle of B is the

intersection of the boundary of B with a hyperplane passing through the center of B.

In Section 3 we prove:

Theorem 1.1. Let Ω ⊂ R
n+1 be a strictly convex bounded domain with C2 boundary.

Assume that Ω is also rotationally symmetric about some line R. Then isoperimetric

regions in Ω are convex.

The above theorem is independent of the results in [SZi]. This is in part due to the

independence between the further hypothesis assumed about Ω, see Figure 1.

Connectedness of minimizers is shown in a similar way by moving components into Ω

until we produce a minimizer with non embedded boundary. Nevertheless, the techniques

employed in [SZi] to establish the convexity are different from ours. A summary of the

arguments in [SZi] is the following. The great circle condition implies that any minimizer

E with |E| > v0 (v0 is the volume of any largest ball inside Ω) contains a largest open ball in

Ω. In particular, E and its convex hull C(E) have the same intersection with the equatorial

hyperplane P . On the other hand, ∂C(E) is a C1,1 hypersurface with mean curvature H∗

such that H∗ 6 H0 is satisfied Hn-almost everywhere [SZi, Theorem 3.7]. Suppose that

E were non convex; then, by the maximum principle the previous inequality cannot be

an equality. Let X be a normal vector to P . By using the Gauss-Green theorem and the

first variation formula for perimeter applied to the field X over the open set enclosed by

E and C(E) it is shown that the piece of ∂C(E) over the equatorial hyperplane cannot be

a graph over the equatorial disk, a contradiction. This argument does not hold in general

for rotationally symmetric domains, see Figure 1.
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Our proof of Theorem 1.1 goes as follows. First, by using Steiner symmetrization we

show that any isoperimetric region E is rotationally symmetric about the line R and has

connected intersection with any straight line orthogonal to R. We shall see that this gives

the absence of singularities in ∂E∩Ω, which becomes a union of pieces of certain Delaunay

hypersurfaces (Proposition 3.2). As a topological consequence, we obtain in Proposition

3.3 that a minimizer must be connected. Symmetrization is not sufficient, in general, to

establish the convexity of a minimizer. Convexity will be definitively proved by a stability

argument which uses Lemma 2.2.

Under the further assumption that Ω satisfies a great circle condition or that Ω is con-

tained in R
2, it is proved in [SZi, Theorems 3.31 and 3.32] that isoperimetric regions with

volume exceeding |B|, B the union of all largest balls in Ω, are unique and nested as a

function of the enclosed volume. As pointed out by the referee, the settings of this paper

allow us to construct an example to illustrate that isoperimetric regions are not always

nested. Such an example is given in Section 4.

Figure 1. The curve Γ generates a rotationally symmetric convex set Ω in

R
3. B is the largest ball in Ω. The great circle condition is not satisfied. The

curve γ consisting in a piece of Γ together with an open arc of an unduloid

generates a set E which contains B. E and its convex hull do not have the

same intersection with any plane passing through the center of B.
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2. Preliminaries

We denote by |E| the (n + 1)-dimensional Lebesgue measure of a set E ⊆ R
n+1 and by

Hk(E), k-dimensional Hausdorff measure. The perimeter P (E) of any Borel set E ⊆ R
n+1

is given by:

P (E) = sup

{
∫

E

div φ : φ ∈ C1

0 (Rn+1,Rn+1), |φ| 6 1

}

.

E is said to be of finite perimeter if P (E) < ∞. The definition implies that perimeter is

not changed by sets of measure zero; in other words, each set E determines an equivalence

class of sets of finite perimeter. To avoid this ambiguity we always assume that:

0 < |E ∩B(x, r)| < |B(x, r)| for every open ball B(x, r) such that x ∈ ∂E.

We refer to [G] for background about perimeter.

By a convex body we mean a bounded convex open set Ω ⊂ R
n+1 with C2 boundary. An

isoperimetric region in Ω is a set E ⊆ Ω of finite perimeter satisfying:

P (E) 6 P (E ′), whenever E ′ ⊆ Ω and |E| = |E ′|.

The following result summarizes what we can say about existence and regularity of

isoperimetric regions in Ω.

Theorem 2.1 ([G], [GMT], [SZi]). For every volume 0 < v < |Ω| there is an isoperi-

metric region E ⊆ Ω with |E| = v. The boundary Σ = ∂E satisfies:

(i) There is a closed singular set Σs ⊂ Σ0 = Σ ∩ Ω of Hausdorff dimension less than or

equal to n− 7 such that Σr = Σ0 − Σs is a smooth embedded hypersurface.

(ii) Σr has constant mean curvature H0 > 0 with respect to the inner normal.

(iii) Σ is C1,1 in some neighborhood of each point in Σ1 = Σ ∩ ∂Ω. Moreover, the mean

curvature H of Σ is defined Hn-almost everywhere and we have H 6 H0.

The above theorem follows from general regularity results in [GMT] and a suitable

application of a result by Brézis and Kinderlehrer [BK] together with the formula for

the first derivative of perimeter, see [SZi, Theorem 3.6]. By using the formula for the

second derivative of perimeter for constant mean curvature hypersurfaces we obtain more

information about the boundary of an isoperimetric region, namely, the stability of Σr.

A constant mean curvature hypersurface M ⊂ R
n+1 is said to be stable if the second

derivative of perimeter for variations preserving volume is nonnegative. This is analytically

equivalent to the following inequality for the index form Q:

Q(u, u) = −

∫

M

u {∆u+ |σ|2 u} dM =

∫

M

{|∇u|2 − |σ|2 u2} dM > 0,(2.1)
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for any smooth function u with mean zero and compact support in M ([BdC]). In the

last formula, ∆ and ∇ denote the relative Laplacian and the relative gradient on M ,

respectively ([Ch2, pp. 2–3]), dM is the Riemannian measure on M ([Ch2, p. 5]), and

|σ|2 is the squared sum of the principal curvatures k1, . . . , kn. Inequality (2.1) is also valid

for mean zero functions with compact support in the Sobolev space H1(M) (of functions

in L2(M) whose gradient is squared integrable).

The stability condition implies that the eigenvalues of the twisted Dirichlet problem for

the Jacobi operator ∆ + |σ|2 on M are nonnegative. A reference for basic properties of

twisted eigenvalues is [BB].

For the proof of Theorem 1.1 we need an instability result. Let M ⊂ R
n+1 be a constant

mean curvature hypersurface. A Jacobi function on M is a nontrivial smooth function u

such that ∆u+ |σ|2 u = 0. Each component of M −u−1(0) is called a nodal region for u. If

U is a nodal region compactly included in M (∂U ⊂ int(M)), then the first eigenvalue for

the (non twisted) Dirichlet problem for the Jacobi operator in U is zero and the associated

eigenfunction is simple and signed [BB].

In the above situation we have:

Lemma 2.2. If there are two different nodal regions U1, U2 compactly included in M , then

M is unstable.

Proof. Consider signed functions ui in C∞(Ui) such that ui = 0 in ∂Ui,
∫

U1

u1 = −
∫

U2

u2

and ∆ui + |σ|2 ui = 0. Extending by zero, we can see ui as a function in H1(M). It is clear

that u = u1+u2 is a H1(M)-function with mean zero and compact support contained in U ,

where U = U1∪U2. Inserting u in the index form (2.1) we obtain Q(u, u) = 0. This implies

that the first eigenvalue λ1(U) of the twisted Dirichlet problem for the Jacobi operator in

U is nonpositive. By using the monotonicity property of twisted eigenvalues we conclude

that λ1(M) < 0. Thus, M is unstable.

Finally, we review some facts about hypersurfaces of revolution with constant mean cur-

vature in R
n+1, known as Delaunay hypersurfaces, see [HMRR, Lemma 4.2, Proposition

4.3] and the references therein.

Let S ⊂ R
n+1 be a smooth hypersurface and assume that S is invariant under the

action of the group O(n) of isometries of R
n+1 fixing the x1-axis. The hypersurface S is

generated by a curve γ contained in the xy (= x1x2)-plane. We parameterize the curve

γ(s) = (x(s), y(s)) by arc-length. Let σ be the angle between the tangent to γ and the

positive x1-direction. We shall consider the normal to S given by N = (sin σ,− cos σ). The

Gauss-Kronecker and the mean curvature on S are given by:

GK = −
y′′ (cos σ)n−2

yn−1
, H =

1

n

{

−σ′ + (n− 1)
cos σ

y

}

.(2.2)
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In particular, we have:

Lemma 2.3. The generating curve γ of an O(n)-invariant hypersurface S ⊂ R
n+1 with

mean curvature H with respect to the normal vector N = (sin σ,− cos σ) satisfies the fo-

llowing system of ordinary differential equations:


















x′ = cos σ,

y′ = sin σ,

σ′ = −nH + (n− 1)
cos σ

y
.

(2.3)

Moreover, if H is constant then the function

yn−1 cos σ −Hyn(2.4)

is constant over any solution of (2.3).

The function (2.4) is usually called a first integral of the system (2.3). Existence of the

first integral is standard in the context of the Calculus of Variations. The constant value

T of (2.4) is the force of the curve γ.

From a straightforward analysis of (2.3) using the first integral (2.4) we can obtain the

following known properties.

Proposition 2.4. Any local solution of the system (2.3) is a part of a complete solution

γ, which generates a hypersurface S with constant mean curvature of several types (see

Figure 2).

(i) If TH > 0 then cos σ > 0 and γ is a periodic graph over the x1-axis. It generates a

periodic embedded unduloid, or a cylinder.

(ii) If TH < 0 then γ is a locally convex curve and S is a nodoid, which has selfintersec-

tions. The normal vector to S rotates monotonically.

(iii) If T = 0 and H 6= 0 then S is a sphere.

(iv) If H = 0 and T 6= 0 we obtain a catenary which generates an embedded catenoid S.

(v) If H = 0 and T = 0 then γ is a straight line orthogonal to the x1-axis which generates

a hyperplane.

When speaking about unduloids or nodoids we identify the curves and the corresponding

generated hypersurfaces.



ISOPERIMETRIC REGIONS IN ROTATIONALLY SYMMETRIC CONVEX BODIES 7

Figure 2. Generating curves of Delaunay hypersurfaces: unduloid, cylin-

der, nodoid, sphere, catenoid and hyperplane.

3. Proof of the main result

The proof of Theorem 1.1 will be broken in several previous results. We begin by

introducing some notation.

Let Ω ⊂ R
n+1 be a strictly convex body which is also rotationally symmetric about some

line R. We shall identify R with the x1-axis. Hence, Ω is invariant under the action of the

group O(n) of isometries of R
n+1 fixing the x1-axis. We denote by Γ the generating curve

of ∂Ω in {x1x2 : x2 > 0}. Clearly, Γ is the graph of a continuous function G : [a, b] → R

defined on a x1-interval. The function G is C2 on (a, b) and satisfies:






G(x) > 0, x ∈ (a, b), G(a) = G(b) = 0,

G′′(x) < 0, x ∈ (a, b), that is G is a strictly concave function.
(3.1)

Consider an isoperimetric region E in Ω with boundary Σ = ∂E. The convexity of Ω

allow us to apply Steiner symmetrization so that the symmetrized set S(E) still lies in

Ω. The set S(E) consists in replacing the intersection between E and any hyperplane P

orthogonal to R by the n-dimensional ball in P centered at P ∩ R and with the same Hn

measure as E ∩ P . We establish the following:

(*) E can be assumed to be rotationally symmetric about the x1-axis and

such that its intersection with any straight line orthogonal to the x1-axis is

an interval.

The above statement follows from basic properties of Steiner symmetrization; a complete

treatment of this topic can be found in [T, Section 3.8].

As a first consequence of (*) we prove:
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Lemma 3.1. Σ0 = Σ ∩ Ω is a smooth embedded hypersurface.

Proof. Suppose that there is a singular point p ∈ Σ0 − R; in this case, the set O ⊂

Σ0 resulting under the action of O(n) over {p} would have Hausdorff dimension equal

to n − 1, giving us a contradiction by Theorem 2.1 (i). This proves the regularity of

Σ0 − R. Moreover, Σ0 − R is a constant mean curvature hypersurface (Theorem 2.1 (ii))

and, therefore, each of its components must be an open piece of one of the Delaunay

hypersurfaces introduced in Proposition 2.4. The C1,1 regularity of Σ in the points of

Σ ∩ ∂Ω (Theorem 2.1 (iii)) implies that, if one of these pieces meet the axis, then it must

be part of a sphere.

Now suppose that there is a singular point p ∈ Σ0 ∩ R. By the above discussion, Σ0

must contain open pieces of two different n-spheres Si centered on R, with the same radius

r0, and which only meet at p. For the following reasoning we can admit that r0 = 1.

For any r ∈ (0, 1), r ≈ 1, let Si(r) ⊂ Si be the spherical cap centered at p and such

that dist (p, ∂Si(r)) = 1 − r. Denote S(r) = S1(r) ∪ S2(r). Let also C(r) be the compact

cylinder with boundary ∂C(r) = ∂S(r). A standard calculation using the co-area formula

(see [Ch2, p. 86]) and a suitable change of variables show that:

Hn[S(r)] −Hn[C(r)] = 2 cn−1

[

∫ π/2

θ

cosn−1 u du− (1 − sin θ) cosn−1 θ

]

,

where cn−1 is the Hn−1 measure of the unit sphere of dimension n− 1, and θ ∈ (0, π/2) is

given by sin θ = r.

Define ψ(θ) = 1/(2cn−1) [Hn[S(r)] −Hn[C(r)]] and φ(θ) =
∫ π/2

θ
cosn−1 u du, for θ ∈

(0, π/2). Using that φ is positive and limθ→π/2 (ψ(θ)/φ(θ)) = 1, we deduce the existence of

a value r, close enough to 1, for which Hn[S(r)] > Hn[C(r)]. This inequality implies that

P (E) > P (E ′), where E ′ is the set resulting when we replace in E the set S(r) by C(r).

As |E ′| > |E| we conclude, after a contraction, that E cannot be an isoperimetric region,

a contradiction.

We summarize and show new properties of minimizers in the following proposition:

Proposition 3.2. Let E be an isoperimetric region in Ω with boundary Σ. Then:

(i) E is rotationally symmetric about the axis R of Ω.

(ii) The intersection between E and any straight line orthogonal to R is an interval.

(iii) Σ0 = Σ ∩ Ω is a smooth embedded hypersurface. Moreover, each component of Σ0 is

an open piece of a sphere, an unduloid or a nodoid.

(iv) Σ is a C1,1 hypersurface of revolution generated by as many connected graphs as

components of E. Each one of these graphs touches the x1-axis orthogonally.
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Proof. As indicated before, (i) and (ii) follow from basic properties of Steiner symmetriza-

tion. Due to the concavity of the function G in (3.1) and the C1,1 regularity of Σ in the

points of Σ ∩ ∂Ω (Theorem 2.1 (iii)), we deduce that vertical and horizontal lines, and

catenaries contained in Ω cannot meet Γ in a C1 way, so statement (iii) is proved. Now

we prove (iv). Note that Σ is a compact C1,1 hypersurface of revolution and, therefore,

it must have finitely many components. Each one of these components is generated by a

finite collection of connected curves.

Let F be a component of E. For any given plane π containing the x1-axis we have, by

(ii), that if x ∈ π ∩ F and x ∈ π is the reflection of x with respect to the axis, then the

segment [x, x] is entirely contained in F . This proves that ∂F is connected. The remaining

properties follows easily from the above argument and the C1 regularity of Σ.

Assertion (ii) in the above proposition has allowed us to obtain topological information

about Σ, as we have shown in (iv). Another topological consequence of Steiner symmetriza-

tion is the following result which states the connectedness of a minimizer.

Proposition 3.3. Any isoperimetric region E in Ω is connected.

Proof. Note that the compactness and the regularity of Σ imply that there are only a finite

number of components of E. Assume that F1 and F2 are two different components of

E. By Proposition 3.2 (iv), each Fi is generated by a graph over a closed x1-interval Ji

contained in the segment [a, b] on which the function G in (3.1) is defined. These graphs

touch the axis in the extreme points of Ji and enclose portions of E; thus, the intervals Ji

are disjoint. We suppose that there are no components of E with generating graph over

the piece of axis between J1 and J2. Let x0 ∈ (a, b) be the unique point on which the

function G reaches its maximum.

If x0 ∈ J1, we can move F2 towards F1 along the axis, without touching any other

component of E, until we produce a first contact. Let F ′

2 the resulting set. The set defined

as the union of F ′

2 with F1 ∪ [E − (F1 ∪ F2)] is a new minimizer in Ω with non embedded

boundary, which gives us a contradiction.

If x0 /∈ Ji, i = 1, 2, then one, or both sets Fi, can be moved along the axis until the two

sets touch, and we conclude in the same way.

To prove the convexity of a connected minimizer E we need to show that the Gauss-

Kronecker curvature on Σ0 is nonnegative. We know that Σ0 is a union of open pieces

of spheres, unduloids or nodoids. At first, Σ0 could contain an unduloid piece S ⊆ Σ0

with points of negative GK curvature, see Figure 1. We cannot use symmetrization to

discard this situation unless Ω is symmetric with respect to a hyperplane orthogonal to the

axis. The non existence of S will be established by invoking the instability result proved

in Section 2.
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Lemma 3.4. There are no pieces of unduloids in Σ0 containing points of negative Gauss-

Kronecker curvature.

Proof. Suppose that S ⊆ Σ0 is an open piece of unduloid with negative curved points.

The generating curve of S is the graph of a positive function g : (c, d) ⊆ [a, b] → R which

extends C∞ to the whole x1-axis (Proposition 2.4 (i)). The inclusion Σ0 ⊆ Ω implies

g < G in (c, d). Moreover, the C1 regularity of Σ gives g(x) = G(x) and g′(x) = G′(x), for

x = c, d. It follows that g′′(x) 6 G′′(x) < 0 for x = c, d. Thus, by equation (2.2) we have

proved that the contact points between ∂S and ∂Ω have positive GK curvature.

On the other hand, let x0 be the unique point in (a, b) on which G reaches its maximum.

G is strictly monotone on the intervals (a, x0) and (x0, b). An easy reasoning by contradic-

tion using the existence of negative curved points in S and the periodicity of the unduloid,

allow us to conclude that c < x0 < d. Hence, g′(c) = G′(c) > 0 and g′(d) = G′(d) < 0.

The above properties and the behaviour of unduloids (see Figure 2) imply that S contains

the closed piece of unduloid between two consecutive maxima of g. Denote by X the vector

field ∂
∂x1

and by N the inner normal to S. Then, u = 〈X,N〉 is a Jacobi function on Σ0

([BdC]) with two different nodal regions compactly included in S (each one of these regions

is given by the set between a maximum and the consecutive minimum). By Lemma 2.2 we

conclude that Σ0 is unstable, the desired contradiction.

Proof of Theorem 1.1. Let E be an isoperimetric region in Ω with boundary Σ = ∂E. By

Propositions 3.3 and 3.2, E is connected and Σ is a connected C1,1 hypersurface consis-

ting in closed subsets of ∂Ω and open embedded pieces of spheres, unduloids or nodoids.

Nodoids are locally convex by Proposition 2.4 (ii), and spheres have positive GK curvature.

By Lemma 3.4 each piece of unduloid contained in Σ has nonnegative curvature. This

proves that E is locally convex in the points of Σ0. Since Ω is convex, E is locally convex

in Σ ∩ ∂Ω too. We conclude by [M, Theorem 1.3] that E is convex.

Remark 3.5. Steiner symmetrization does not require the C2 smoothness or the strict con-

vexity of Ω. Thus, every consequence obtained only by using regularity results for Σ0

(Theorem 2.1 (i)) and symmetrization is also valid in the general case in which Ω is a

rotationally symmetric convex domain. In particular, Proposition 3.2 is true up to the

C1,1 regularity of Σ, the orthogonality condition in Proposition 3.2 (iv), and the possible

Delaunay hypersurfaces contained in Σ0. Hence, Proposition 3.3 can be proved in a similar

way to obtain the connectedness of any minimizer.

Remark 3.6. If Ω is not strictly convex but has C2 boundary then Proposition 3.2 is valid.

However, the proof of Lemma 3.4 does not hold in this case; in fact, it is possible to find

stable pieces of unduloids with points of negative curvature contained in a C∞ convex

domain.
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Denote by S1 the closed piece of unduloid between a maximum and the consecutive

minimum of its generating graph. Pedrosa and Ritoré [PR, Proposition 5.3] have shown

that for n > 9 there exist stable free boundary pieces S1 connecting two parallel hyperplanes

in R
n+1. Let S be the union of such a piece together with its reflection with respect to

the hyperplane P orthogonal to the axis and containing the minimum. Note that S is the

union of two nodal regions as in Lemma 3.4 but we cannot apply Lemma 2.2 to conclude

that S is unstable because these regions are not compactly included in S.

To prove that S is stable let λ be a twisted Dirichlet eigenvalue for the Jacobi operator

in S and u an associated eigenfunction. By using the symmetry of S with respect to P we

can decompose u as the sum of a symmetric and an antisymmetric function (with respect

to P ). For this reason, λ is an eigenvalue for a (non twisted) Dirichlet problem or for

a Neumann-Dirichlet mixed problem in S1. In the first case λ > 0 since S1 is a nodal

region for the Jacobi function given by u =
〈

∂
∂x1

, N
〉

, where N is the inner normal to

S1. In the second one, the mean zero condition for u and the known inequality between

mixed and Neumann eigenvalues ([Ch2]) show that λ > λN
k for some k > 2, where {λN

i }

is the collection of Neumann eigenvalues for the Jacobi operator in S1. The free boundary

stability of S1 implies that λN
k > 0 and so λ > 0.

Finally, to find a convex set Ω containing S it suffices to consider the cylinder in the

convex hull of S and attach to it two topological n-balls in a C∞ way.

Remark 3.7. Let Ω be a rotationally symmetric convex domain. We can approximate the

generating function G of ∂Ω by a sequence {Gn} of C2 strictly concave functions whose

graphs are contained in a ball and lie over the graph of G. Thus, we obtain a sequence Ωn

of domains containing Ω in the hypothesis of Theorem 1.1. Denote by v0 the volume of a

largest ball in Ω. For given volume v0 < v < |Ω| let En be a convex minimizer in Ωn with

|En| = v. We can suppose that the sequence En converges as in [SZi, Theorem 3.31] to a

set E ⊆ Ω. Since the above convergence preserves convexity and volume we have that E

is convex, |E| = v and, moreover:

P (E) 6 lim inf P (En).

Finally, if E ′ is a set in Ω with |E ′| = v, then the inclusion Ω ⊆ Ωn implies that

P (En) 6 P (E ′). Passing to the limit and using the last equation, we obtain P (E) 6 P (E ′).

We have just proved the existence of a convex isoperimetric region in Ω.

The above argument does not prove that any minimizer in Ω is convex unless there is

a unique minimizer for the corresponding volume. Uniqueness results assuming that Ω

satisfies a great circle condition or that Ω is contained in R
2 are proved in [SZi, Theorems

3.31 and 3.32].
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4. An example of non nested minimizers

In [SZi, Theorem 3.31] it is proved that, if Ω ⊂ R
n+1 is a bounded convex domain

that satisfies a great circle condition, then isoperimetric regions in Ω for large volume are

unique and nested. In precise terms we have E1 ⊂ E2 whenever |B| 6 |E1| < |E2|, B the

union of all largest balls in Ω. As indicated by examples in [GMT2] we cannot expect

nestedness when Ω is non convex. In this section we construct an example which shows

that nestedness of minimizers does not hold even if Ω is convex.

First of all note that we can approximate a solution with very large height of the Delaunay

equation (2.3) by an appropriate circle. Let γ = γH,R = (x, y, σ) be the solution of the

system (2.3) for H > 0 constant, with initial conditions given by γ(0) = (0, R, 0). Consider

the system (2.3)∗ resulting by suppressing the non linear term in the third equation of (2.3).

The solution τ = τH,R of (2.3)∗ with τ(0) = (0, R, 0) is a circle of radius 1/(nH). By using

the continuous dependence of the solutions of a differential equation with respect to small

variations of the equation ([RM, Théorème 6.2 and Remarque 6.3]) we obtain:

(**) Let δ and ε be positive. Then there is a number R0 = R0(δ, ε) > 0

such that:

|γH,R(s) − τH,R(s)| 6 ε, H > 0, R > R0, |s| 6 δ.

Now, we will describe an example of non nested minimizers. Take a number R0 > 0

corresponding to a large δ and a sufficiently small ε in (**). Choose an isosceles triangle T

in the xy-plane with base on the interval [−1, 1] and very large height so that the angles

between the equal sides and the base are close enough to π/2 and −π/2 respectively, and

the x-coordinate of a point (x, y) ∈ ∂T with 0 < y 6 R0 + 1 is close enough to 1 or −1.

Call Ω ⊂ R
3 to the convex set obtained by rotating T around the x-axis. It is clear that

the largest ball B ⊂ Ω has radius r < 1 and does not have a great circle contained in ∂Ω.

Select an isoperimetric region E in Ω with volume close enough to 2πR2
0. By the results

in Section 3, E is convex and each component of Σ0 = ∂E ∩Ω is an open piece of a sphere,

a nodoid or an (GK > 0) unduloid with constant mean curvature H0 > 0. The mean

curvature of ∂E in a neighborhood of the C1,1 points satisfies H 6 H0 by Theorem 2.1

(iii). As H(x, y) → +∞ when (x, y) ∈ ∂T and y → 0, we deduce that ∂E cannot contain

the lower vertices of T . In fact, an approximation argument such as that in Remark 3.7 tell

us that there exist a minimizer E with C1,1 boundary. By using Steiner symmetrization

we also obtain that E is symmetric with respect to the yz-plane.

By the above properties, the generating curve of Σ0 in {xy : y > 0} consists in an upper

symmetric cap of an unduloid or a nodoid -we can parameterize it as the curve γH0,R-, and

two symmetric pieces of circles with the same radius r0 which meet the x-axis orthogonally.

Denote by m the height of the points in γH0,R ∩ ∂T . As the volume enclosed by E is very
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close to 2πR2
0, it is clear that R > R0 and we can also assume that m < R0 + 1 (in the

other case we immediately obtain that B 6⊂ E). Hence, by the approximation (**) and the

construction of Ω we conclude that the radius of the circle τH0,R is very close to 1, that is,

1/(2H0) ≈ 1. In particular, we can suppose that H0 6 1, which gives r0 > 1 > r. This

last inequality easily implies that B 6⊂ E and the example is finished.

Remark 4.1. The approximation argument in Remark 3.7 allow us to show an example of

a strictly convex body with non nested minimizers.
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[HMRR] M. Hutchings, F. Morgan, M. Ritoré and A. Ros, Proof of the double bubble conjecture, Ann.

Math., 155 (2002), no. 2, 459–489.

[M] P. Mani–Levitska, Characterizations of convex sets, Handbook of convex geometry, Volume A,

Elsevier Science Publishers B.V., Amsterdam, 1993, 19–41.
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