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Motivation

A lot has been learned about the dynamics of multiple D-branes in the last
past years:

e U(1)N — U(N) symmetry enhancement
o effective actions describing the non-Abelian dynamics

e many applications of non-Abelian effects in modern string theory
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o effective actions describing the non-Abelian dynamics

e many applications of non-Abelian effects in modern string theory

Question: Is the action invariant under background gauge transformations ?

[Adam, Gheerardyn, BJ, Y. Lozano][Adam, Illan, B.].][Adam]
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Motivation

A lot has been learned about the dynamics of multiple D-branes in the last
past years:

e U(1)N — U(N) symmetry enhancement
o effective actions describing the non-Abelian dynamics

e many applications of non-Abelian effects in modern string theory

Question: Is the action invariant under background gauge transformations ?

[Adam, Gheerardyn, BJ, Y. Lozano][Adam, Illan, B.].][Adam]
0B, = 20,2, — 0V, = —=X,D, X", OXH =%, X°P XH]
Question: Is the action invariant under background general coord transf ?
e Worldvolume coordinates : Abelian theory — trivial

e Target space coordinates : manifest as adjoint scalars X* in worldvolume
How do background diffeomorphisms affect matrix coordinates X#?
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Outlook

1. Introduction
e Physics of multiple branes

e Problems with diffeomorphisms

2. Matrix-valued differential geometry from scratch
e Matrix scalars
e Matrix contravariant vectors
e Matrix covariant vectors
e Matrix tensors and form fields

e Scalar product & problems

3. Conclusions
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1. Non-Abelian physics of multiple parallel branes

The physics of N separated parallel Dp-branes is very different from physics
of N coinciding Dp-branes.

e separated: — Abelian theory

e coinciding: — non-Abelian theory
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1. Non-Abelian physics of multiple parallel branes

The physics of N separated parallel Dp-branes is very different from physics

of N coinciding Dp-branes.

separated: — Abelian theory

coinciding: — non-Abelian theory

This non-Abelian character has numerous manifestations in modern string

theory:

Dielectric effect

Gravity duals of (confining) gauge theories
Enhancons

Matrix models in non-trivial backgrounds

Microscopic description of giant gravitons

[Myers]

[Polchinsky, Strassler]

[Johnson]

[Berenstein, Maldacena, Nastase]

[B.J., Lozano, Rodriguez]
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Difference in degrees of freedom

e separated: N U(1) vector fields V!, (9 — p)N scalars X%
— Abelian worldvolume action

e coinciding: 1 U(N) Yang-Mills vector V!, N adjoint scalars X*
— non-Abelian worldvolume action
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Difference in degrees of freedom

e separated: N U(1) vector fields V!, (9 — p)N scalars X%
— Abelian worldvolume action

e coinciding: 1 U(N) Yang-Mills vector V!, N adjoint scalars X*
— non-Abelian worldvolume action

Extra degrees of freedom come from massless strings stretched between

coinciding strings:

strings between same brane: m ~ 0

strings between different branes: m ~ L

As L — O:

—> N 4+ N(N — 1) = N* degrees of freedom
— U(1)" — U(N) gauge enhancement
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Difference in degrees of freedom

e separated: N U(1) vector fields V!, (9 — p)N scalars X*

— Abelian worldvolume action

e coinciding: 1 U(N) Yang-Mills vector V!, N adjoint scalars X*
— non-Abelian worldvolume action

Extra degrees of freedom come from massless strings stretched between

coinciding strings:

strings between same brane: m ~ 0

strings between different branes: m ~ L

As L — O:

—> N 4+ N(N — 1) = N* degrees of freedom
— U(1)" — U(N) gauge enhancement
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Role of the scalars

e Abelian: X"/ (o) indicate position of /th brane in direction z*

— rearrange in diagonal matrix X* (o) = diag (X“l(a), . X“N(J)>
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Role of the scalars

e Abelian: X"/ (o) indicate position of /th brane in direction z*

— rearrange in diagonal matrix X* (o) = diag (X“l(a), . X“N(J)>

e non-Abelian: X" non-Abelian scalars in adjoint of U(/V)
— eigenvalues indicate position of /th brane in direction z*
— not simultaneously diagonisable: | X" X"| £ 0
— non-commutative geometry

e Background fields: & = ®(z) — & = ¢(X)
o (I)(X) = Z iﬁm..ﬁﬂn@(az)]xAZOX/“...X“” [Douglas][Garousi, Myers]

n n!

— Symmetrized trace prescription [Tseytlin]
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Role of the scalars

e Abelian: X"/ (o) indicate position of /th brane in direction z*

— rearrange in diagonal matrix X* (o) = diag (X“1(0)7 e X“N(a))

e non-Abelian: X" non-Abelian scalars in adjoint of U(/V)
— eigenvalues indicate position of /th brane in direction z*
— not simultaneously diagonisable: | X" X"| £ 0
— non-commutative geometry

e Background fields: & = ®(z) — & = ¢(X)
— (I)(X) = Z i(?lul...aunq)(llf)’x/\:())(’ul...)("LL” [Douglas][Garousi, Myers]

n n!

— Symmetrized trace prescription [Tseytlin]
e coordinate transf: g, = A", A"59,, — X' = X'(X) such that
Slg, X] = Slg’, X']

Question: What is X' = X'(X)?
— Problems when combining ordering and transitivity

[de Boer, Schalm]
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Abelian composition:

b e [V 7 7 VP ppA
y' = 2 + ay,x"2" + b, x7afrt +

Ho= oyt al, Y+ Uy

I p ~ VP p po~o LM Vo oA
= 2" + (a),+ay,) 2"z” + (b, +2a},a7\ + b, ) 2’2’z + ...
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Abelian composition:

yho= ot + d x

p p p
b, T X —|—bp/\:1:':1:'a: + .

o=yt Al + Yy +

= ¥ + (a’lljp + a’lljp) L xp (blljp)\ + 2a'ua~p)\ + bypA) :Cp'r)\ T .

Non-abelian composition:

YH = X' + Fl(a) X"X? + GY \(a,b) X" XPX* +

VpA
Z¢ = YM 4+ FL@ Y'Yy’ + G \(a,b) Y'YPY? +
= X'+ |Flfa) + Fl(@)] X0 x7

+|a,

(0,0) + F (@) Fgp(a) + FU\(@) Fpla) + Gl (@,8)] XXX +
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Abelian composition:

[ p p p p
y' o= o + a2z —|—bp/\:1:':1:':c + .

o=yt Al + Yy +

= o' + (af}, +al,) z"z" + (b’,pr+2a“a~p>\+pr>\) Pt 4

Non-abelian composition:

YH = X' 4 Fli(a) XVXP + G \(a,b) XY XPX* 4

Z¢ = YM 4+ FL@ Y'Yy’ + G \(a,b) Y'YPY? +
= X'+ |Flfa) + Fl(@)] X0 x7

+|a,

(0,0) + F (@) Fgp(a) + FU\(@) Fpla) + Gl (@,8)] XXX +

= U(Xu F(a+a) X“X? + G \(a+d,b+ 2aa+b) X"X? X + ...)U‘f

VpA

— 3 F! and G, ,o» such that above is true

B. Janssen (UGR) 7/23



flz) — F(X), g9(x) — G(X)
h(z)=(go f)(xr) — H(X) # (Go F)(X) forany ordering!

Abelian diffeomorphisms is not a subset
of Non-Abelian DIFFEOMORPHISMS

[de Boer, Schalm]

No solution for S|g, X| = S[¢'(g), X' (X)] ...
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flz) — F(X), g9(x) — G(X)
h(z)=(go f)(xr) — H(X) # (Go F)(X) forany ordering!

Abelian diffeomorphisms is not a subset
of Non-Abelian DIFFEOMORPHISMS

[de Boer, Schalm]
No solution for S|g, X| = S[¢'(g), X' (X)] ...

... unless there is an explicit metric dependence in X'(.X)

— Real invariance:  S|g, X| = S|¢'(g9), X'(g, X)] [de Boer, Schalm]
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flz) — F(X), g9(x) — G(X)
h(z)=(go f)(xr) — H(X) # (Go F)(X) forany ordering!

Abelian diffeomorphisms is not a subset
of Non-Abelian DIFFEOMORPHISMS

[de Boer, Schalm]
No solution for S|g, X| = S[¢'(g), X' (X)] ...

... unless there is an explicit metric dependence in X'(.X)

— Real invariance:  S|g, X] = S[¢'(g), X'(g, X)] [de Boer, Schalm]

Two strategies:
e Look for inclusion function via Noether procedure

e Construct matrix differential geometry from scratch
— rest of the talk
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2. Matrix differential geometry from scratch

Construct an algebra for matrix coord transf on its own,
independend of group of Abelian diffeomorphisms
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2. Matrix differential geometry from scratch

Construct an algebra for matrix coord transf on its own,
independend of group of Abelian diffeomorphisms

e no homomorphism between diff and DIFF
— 1o inclusion function

e require homomorphism between DIFF and diff

—  projection onto abelian functions via diagonal matrices

e Construct matrix functions, scalars, vectors, tensors, ...
by analogy of Abelian counterparts

Matrix function, defined by expansion series:

=1
P(X) =) 3 v XM XN

k=0
where f,, ,, complex coefficients without specific symmetries

— sum, product and composition gives matrix function
B. Janssen (UGR)

9/23



2.1 Substitution operator and matrix scalar

Coordinate transformation:

Abelian : Tyt = gt H(x) with  £(z) = (50(;6),

non — Abelian : X" — YV# = X/ —=(X)  with Z(x) = (Eo(aj),

B. Janssen (UGR)
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2.1 Substitution operator and matrix scalar

Coordinate transformation:

Abelian : T gt = ot — e(x) with  &(z) (50(33), gD—l(x))

non — Abelian : X" — Y/ = X* - =ZH(X) with Z(x)= (EO(aj), e ED_l(x))

Abelian scalars:

f'(y) = f(z) = 0¢f(x) = ['(x) — f(z)

To first order in &

f(x) = ii(akl...akkf)m) A

?TA

oef(z) = i %(@1 8Akf) (0) (fh (z)a?2..a™ 4+ .+ ZCAl...CBAk_lfAk(ZC))

B. Janssen (UGR) 10/23



Non-Abelian scalars:
F'(Y)=F(X) — 0eF(X) = F'(X)—- F(X)

To first order in &

(0. @)

1
F(X) = Zk— oo, XM X

k=0

o0

1
G F(X) = D= fun (E/\l(X)XAQ...XAk . +XA1...XA’C—1EA’€(X))
k=0

B. Janssen (UGR) 11/23



Non-Abelian scalars:
F'(Y)=F(X) — 0eF(X) = F'(X)—- F(X)

To first order in &

1
P(X) = Do P XN XY
k=0
1
GF(X) = D= uen (E/\l(X)XM...XM+...+XA1...XM—1EM(X))

7
|

0

= Z°0,F(X)

where we defined =0, as:
“take each X" in F'(X) in turn and sustitute by =*(X) and sum over everything”

Hence matrix scalars are defined by

5=F(X) = =9, F(X)

B. Janssen (UGR) 11/23



6., 8] F(X) = EWA(ZP—@F(X)) _ EWA(EP—(‘%F(X))
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61, 0,] F(X) = EWA(ZP—@F(XD _ ZWA(EP—@)F(XD

- (=0,

Zp—ap>F(X) + (EWAZP)(‘%F(X)

_ (ZA@

EP—@,>F(X) _ (ZA@EP) 9,F(X)
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61,0, F(X) = EA&,\(Zp—apF(XD _ ZAC‘?A(EP—@)F(XD

_ (EW,\ Zp—ap>F(X) + (EAC‘AE’))@[)F (X)

_ (ZAaA Ep—c‘?p>F(X) _ (ZA@EP)@F(X)

- (EA@ZP)&,)F(X) — (ZWAEP)%%F(X)

= X9, F(X)

where

AP ==20,2F — YA0,\E=F
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61,0, F(X) = EA&,\(Zp—apF(XD _ ZAC‘?A(EP—@)F(XD

- (=0,

Zp—ap>F(X) + (EA@Azp)apF(X)

_ (ZA@

Ep—@,)F(X) _ (EWAEP) 9,F(X)

- (EA@ZP)@,)F(X) — (ZWAEP)%F(X)

= X9, F(X)

where

AP ==20,2F — YA0,\E=F

o )=F(X)=7=rd, F(X) forms an algebra

e Leibnitz rule: =r0,(F'-G) = Zr0,F -G + F-=rd,G

B. Janssen (UGR) 12/23



2.2 Contravariant matrix vectors

Abelian: ogat = £P0,a* — a0, &
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2.2 Contravariant matrix vectors

Abelian: ogat = £P0,a* — a0, &

Non-Abelian: Al =370 gah o XML X

Sz Al = Zp0, Al — ArD,EH
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2.2 Contravariant matrix vectors
Abelian: ocat = EPDyat — ald,E!
Non-Abelian: Al =370 gah o XML X

Sz Al = Zp0, Al — ArD,EH

Commutator:

= (200,50 — 00,27 ) 9, A — A3, (270, 5 — 30,2
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2.2 Contravariant matrix vectors

Abelian: ogat' = £P0,a" — a0, &

Non-Abelian: Al =370 ak o XML X

0z A¥ = 2P0, AP — ArD,=H
Commutator:

= (200,57 — 00,27 ) 0, A — W03, (E70,5 — 39,2

Scalar multiplication:

0=(F - A"y = 0zF - AF + F - 6= AF = Zrd,(F - A*) — F - ArO,=
# ZPO,(F - A*) — (F - Ar)), =V

— A*(X) do not form vector space!

— Give up Leibnitz rule? Enhance/restrict definition of matrix vector?
B. Janssen (UGR) 13/23




2.3 Covariant matrix vectors

Abelian: df = dz?0,f
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2.3 Covariant matrix vectors

Abelian: df = dz?0,f

Non-Abelian:
dF = S0 L (c_zXMX&...XM 4. +XA1...XAk—1c_iXAk)

= dXr0, F
where we defined dX7 0, as

“take each X" in F(X) in turn and sustitute by dX* and sum over everything”
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2.3 Covariant matrix vectors

Abelian: df = dz?0,f

Non-Abelian:
dF = 373070 w P (C_iXMXA?...XA’f + ...+ XAl---XAk_ldXAk)

dXr 0, F

where we defined dX7 0, as

4

“take each X" in F(X) in turn and sustitute by dX* and sum over everything’

Variation:

0z (AF) = d(6=F) = d(5F0,F) = d=r 9, F + =1, dF
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2.3 Covariant matrix vectors

Abelian: df = dz?0,f

Non-Abelian:
dF = 373070 w P (dXAlXA?...XA’f + .+ XM---XM_%—ZXM>

= dX*0,F
where we defined dX7 0, as

“take each X" in F(X) in turn and sustitute by dX* and sum over everything’

Variation:

[1]

0z (AF) = d(0zF) = d(Er0,F) = d=rd, F + ZF 0, dF

— possible to write in terms of d/" only?
(necessary for defining one-forms)

B. Janssen (UGR) 14/23



d=r0, F reads

“take each X" in F(X) in turn and sustitute by d=* and sum over everything”

— 50, F = (459, o d)F = d=J, (dF)
where we defined QEMQM as

“take each dX*" in dF(X) in turn (leaving X*’s untouched)
and sustitute by d=" and sum over everything”
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d=r0, F reads

“take each X" in F(X) in turn and sustitute by d=* and sum over everything”

— 50, F = (459, o d)F = d=J, (dF)
where we defined QEMQM as

“take each dX*" in dF(X) in turn (leaving X*’s untouched)
and sustitute by d=" and sum over everything”

Hence the variation of d /' is

1
dF = 3 — fuon (XX X 4 X X
k=0

=(dF) = dZP9,(dAF) + TF0,(dF)

—— Generalize to one-forms that are not dF’

B. Janssen (UGR) 15/23



Matrix one-forms

oo k

B = Y 3 b0 XN XN d X XA X
k=1 j=1

0=(B) = d="9,(B) +

HOu(B)

B. Janssen (UGR)
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Matrix one-forms

oo

k

ZZb Al"'AkX)\l..X/\g LA XN XA+ Xk
=1 j—1

Comments

01,02]B = M(B) —

with A = 20, X0 — X200, 20

B. Janssen (UGR)
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Matrix one-forms

oo

k

Zzb >‘1--->\1<;X)\1 XNi-1d X XA+
k=1 j5=1

Comments

01,00]B = EKﬁEE(B)-+ 9, (B)

with A¥ = =9, 01 — Xrg,=H

e Not decomposable in components 5 # B, dX"

B. Janssen (UGR)
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Matrix one-forms

oo

k

Zzb Ao XML XN XN XA
k=1 j5=1

Comments

01,02] B = dAr9 (B) + A0, (B)

with A¥ = =09, — S0, =0

e Not decomposable in components 5 # B, dX"

e 3 matrix one-form, /', ' matrix scalars
— F.-B-F

is matrix one-form

— Matrix one-forms span vector space

B. Janssen (UGR)
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2.4 Covariant matrix tensors

Abelian: C =Cydat @ dz”

— Place of dz" and dz” is important
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2.4 Covariant matrix tensors

Abelian: C =Cydat @ dz”

— Place of dz" and dz” is important

Non-Abelian: C=>, Zﬁij:'l CS{‘?.).MC XM dgy X dgy X X

7]

where d; X' indicates ith factor of tensor space

B. Janssen (UGR) 17/23



2.4 Covariant matrix tensors
Abelian:

C =Cydat @ dz”
— Place of dz" and dz” is important
Non-Abelian:

_ \\© k (4,9)
C = Zk:2 Zw;l Cpa .. g
i#]

where d; X' indicates ith factor of tensor space
Transformation:

5=C =

=r0,C + dEPQpC
Cfr:

0oC =¢°0,C, + C,,0,8° + C,0,8°

B. Janssen (UGR)
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2.4 Covariant matrix tensors
Abelian:

C=Cydat @dz”

— Place of dz" and dz” is important

. 00 k 1,9 : ,
Non-Abelian: C=577, 212‘721 e x| diy X P dygy X5 .. X P
where d ;) X" indicates ith factor of tensor space
Transformation: 0=C = =r0,C + d=r Qp C
Cfr: oCy,, =£°0,C, + C) 0,87 + C,,0,8°
1 . (Zaj) - (.77@)
Anti-symmetry: Conl = —Cpiy .\ g
oo k
C = 3 > el (X XP i) X X = X gy Xy X X
k=2 i,j=1
i7]
B. Janssen (UGR)
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0. @)

Z{ ) uk( Xul C_Z(Q)X’“LQ XHs X He d(l)Xm X2 d(Q)X“?’... X Mk
=2

| &.

_|_ _|_ (/_i(l)X'ul XHQ...X'uk_l C_Z(Q)X'uk)
— bm » (d(g)Xﬂl d(l)Xm X M3 X Mk + d(g)Xm X 2 5_1(1)XM3--- P GL
_|_ _|_ C_Z(Q)X'ul XHQ...X'uk_l d(l)X'uk)

+ ...+
4+ p(k) (d XXX X e X XXM X ) X

[1 - [

_|_ ‘|‘ X'ul... )('uk_2 d(Q)X'uk_l d(l)Xﬂk)
M1 g

—b (k) (d ML XH2  YHk—1 d(Q)X'LLk 4+ XM d(l)Xﬁbz X M3 X k-1 d(g)Xﬂk

4+ ... + )('ul...)('uk_2 d(l)X'uk_l d(Q)X'LLk)i|
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B = 30100, (o X0 dip) X X0 X e d) XX dy) X X
k=2

_|_ _|_ C_i(l)X'ul X“Q...X'uk_l C_Z(Q)X'uk)
— bm » (d(g)Xﬂl d(l)Xm X M3 X Mk + d(Q)X,Ul X 2 C_l(l)XM?’...X“k

_|_ _|_ d(Q)X,Ul X'uQ... X'uk_l (,_i(l)X'uk)
+ ...+
4+ p(k) (d XXX X e X XXM X ) X

[1 - [

_|_ ‘|‘ X'ul... )('uk_2 d(Q)XMk:—l d(l)Xﬂk)

K1

—b (k) (d ML XH2  YHk—1 d(Q)XMk 4+ X d(l)Xm X M3 X k-1 d(g)Xﬂk

4+ ... + )('ul...)('uk_2 d(l)X'uk_l d(Q)X'LLk)i|

NB: B=dF <= dB=0

s d(d.)=0
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2.5 Scalar product

1
F=) 5o XM X (scalar)
k=0
- 1 A A
Al = Z E CL'L;\Jl___Ak XXk (contrav. vector)
k=0
oo k
B = Z Z b(J) Al...)\kX)\l . -XAj_lC_lX)\jX)\jJrl . -XAk (covar. vector)
k=1 j=1

— can we define a scalar product between covar and contrav vectors?
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2.5 Scalar product

— 1
F = Z E f>\1 b XM X (scalar)
k=0
. 1 A A
Al = Z E a’;l.”)\k XXk (contrav. vector)
k=0
o k
B = Z Z b(j) Al...)\kX>q ---XAj_lC_lX)\jX)\ijl XAk (covar. vector)
k=1 j=1

— can we define a scalar product between covar and contrav vectors?

— sustitute dX* in B by A™:

00 k
AB =Arg, B = Y b, L XM XM AN XN XM = F(X)

k=1 7=1
where A/0  reads

“take each dX* in B in turn and sustitute by A" and sum over everything”
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Transformation: wuse Leibnitz rule

0=z(A-B) = 0zA-B+ A-6=B

= (EpapAu—APapEu)QuB + AMQM(EpapBJrc_iEPQpB)
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Transformation: wuse Leibnitz rule

0=z(A-B) = 0zA-B+ A-6=B

= (2P0, A+ — Ar0,=M)0, B + A9, (=r0,B +d=r0,B)

NB: (A»0,2)0, B = ArQ, (d=r 0, B)
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Transformation: wuse Leibnitz rule

0=z(A-B) = 0zA-B+ A-6=B

= (EpapAu—ApapEu)QuB + AMQM(EpapBJrc_iEPQpB)

NB: (A»0,2)0, B = ArQ, (d=r 0, B)

o

— (29,41 8,B + Arg, (=0, B)

= =rd,(A-B) — A" and B are dual objects
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Transformation: wuse Leibnitz rule

0=(A-B) =

0=sA-B+ A-0=8

(2r0, Ar — ApapEu)QﬂB + AL, (r0, B +c_iEPQpB)

NB: (A»0,2)0, B = ArQ, (d=r 0, B)

(570,40, B + A7 g, (=9, B)
=00, (A- B)

Comments and problems

— A" and B are dual objects

e Scalar transformation:

=0, F =
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Transformation: wuse Leibnitz rule

0=(A-B) =

0=sA-B+ A-0=8

(2r0, Ar — ApapEu)QﬂB + AL, (r0, B +c_iEPQpB)

NB: (A»0,2)0, B = ArQ, (d=r 0, B)

(570,40, B + A7 g, (=9, B)
=00, (A- B)

Comments and problems

— A" and B are dual objects

e Scalar transformation:

= 9,F = 2°9,dF = =-dF
e Every form dual to A7 0, is of the form

B =30 S0 b9y X XN d X X A X
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Transformation: wuse Leibnitz rule

0=(A-B) =

0=A-B+4+ A-0=B

(2r0, Ar — ApapEu)QﬂB + AL, (r0, B +c_iEPQpB)

NB: (A»0,2)0, B = ArQ, (d=r 0, B)

(570,40, B + A7 g, (=9, B)
=00, (A- B)

Comments and problems

— A" and B are dual objects

e Scalar transformation:

= 9,F = 2°9,dF = =-dF
e Every form dual to A7 0, is of the form

B =30 S0 b9y X XN d X X A X

e More operators than A7 0 dualto B (— old problem for vectors)
B. Janssen (UGR)
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Problem:

Old problem: F - A" . F' does not transforms as vector
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Problem:

Old problem: F - A" . F' does not transforms as vector

New problem: Define F'- A»0, - F', acting as:

(F-Ap9,-F)B = F-(A"§,B)- F' = F"

— Space of objects dual to B contains not only A"0 ,
butalso F - ArQ, - F' — much bigger space!
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Old problem: F - A" . F' does not transforms as vector

New problem: Define F'- A»0, - F', acting as:

(F-A29,-FY\B = F-(A* §,B) - F' = F"
— Space of objects dual to B contains not only A"0 ,

butalso F - ArQ, - F' — much bigger space!

New problem 2: What objects are dual to F'- A»0,, - F'?

(G-B-G')(F-A"g,-F') = G-F-Ag B-F -G
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Problem:

Old problem: F - A" . F' does not transforms as vector

New problem: Define F'- A»0, - F', acting as:

(F-Ap9,-F)B = F-(A"§,B)- F' = F"

— Space of objects dual to B contains not only A"0 ,
butalso F - ArQ, - F' — much bigger space!

New problem 2: What objects are dual to F'- A»0,, - F'?
(G-B-G)F-AQ, -F')=G-F-A9,B-F -G

New problem 3: What objects are dual to (G- 5 - G')?
New problem 4:

No clear solution at this point...
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3. Conclusions
o F =0 L, XML XM
Al =370 ah o XML X
B =30 520 b9y X XN d X X A X

C Zk‘ 9 sz 1 C/(Jl )Mk XM d(l)Xﬂzd(Q)XﬂyXﬂk

7]
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3. Conclusions
o =300 & i, XM XM
Al =370 ah o XML X
B =30 520 b9y X XN d X X A X

C Zk‘ 9 sz 1 CEU )Mk XM d(l)Xﬂzd(Q)XﬂyXﬂk

7]

¢ OF = Zrd, F(X)
JAH = Ep0,A* — Ard,EH
0B = 2r9,B + d=+d,B
0C = 2¢9,C 4 d=r9,C
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3. Conclusions
o F =0 L, XML XM
Al =370 ah o XML X
B =30 520 b9y X XN d X X A X

O Zk‘ 9 sz 1 CE” )Mk XM d(l)Xﬂzd(Q)XﬂyXﬂk

7]

¢ OF = Zrd, F(X)
JAH = Ep0,A* — Ard,EH
0B = 219, B + d=+d,B
0C = 2¢9,C 4 d=r9,C

e de Rahm operator d
scalar product (A - ) — problems
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e Tower of ever bigger dual spaces
#H{AMY < #{B} < #{F - A" '} < #{G-B-G'} < ...
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e Tower of ever bigger dual spaces
#H{AMY < #{B} < #{F - A" '} < #{G-B-G'} < ...

— no isomorphism between covariant and contravariant vectors

— Not clear how to generalise metric?

1 1%
a, = gua, a" = g"a,
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e Tower of ever bigger dual spaces
#H{AMY < #{B} < #{F - A" '} < #{G-B-G'} < ...

— no isomorphism between covariant and contravariant vectors

— Not clear how to generalise metric?

1 1%
a, = gua”, a = g"a,

e Possible ways out:
— Give up Leibnitz rule?

— Enhance definition for vector & give up transformation rule?
- .7
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