

Backreaction in warped compatifications of supersymmetric domain walls

Bert Janssen
Universidad de Granada \& CAFPE

In collaboration with: J. Blåbäck, B. Vercnocke and T. Van Riet
References: JHEP 10 (2012) 139 (arXiv:1207.0814) and arXiv: 1312.6125 (to appear in JHEP).

Outline

1. Extra dimensions: what and why

Outline

1. Extra dimensions: what and why
2. Compactification in supergravity

Outline

1. Extra dimensions: what and why
2. Compactification in supergravity
3. p-brane solutions

Outline

1. Extra dimensions: what and why
2. Compactification in supergravity
3. p-brane solutions
4. Fractional dynamical branes

Outline

1. Extra dimensions: what and why
2. Compactification in supergravity
3. p-brane solutions
4. Fractional dynamical branes
5. General backreacted domain walls

Outline

1. Extra dimensions: what and why
2. Compactification in supergravity
3. p-brane solutions
4. Fractional dynamical branes
5. General backreacted domain walls
6. Conclusions

1. Extra dimensions: What and why

Gravity is poorly understood at small scales:

- Theoretically: General relativity is not renormalisable

How real are singularities?
Few clues about quantum gravity

1. Extra dimensions: What and why

Gravity is poorly understood at small scales:

- Theoretically: General relativity is not renormalisable

How real are singularities?
Few clues about quantum gravity

- Experimentally: Hard to test at small scales

$$
\begin{aligned}
& V(r)=-G_{N} \frac{m_{1} m_{2}}{r}\left[1+\alpha e^{-r / \lambda}\right] \\
& |\alpha|=1 \Longrightarrow \lambda \leq 56 \mu m \\
& |\alpha|=8 / 3 \Longrightarrow \lambda \leq 44 \mu m
\end{aligned}
$$

[Kapner et al., 2007]

Dimensional reduction

Kaluza (1921): Unification of General Relativity and Maxwell theory (with scalar) in $\mathrm{D}=5$ in presence of isometry
Klein (1926): Fifth dimension is compact and small

Massless field in $4+1$ dimensions: $\hat{\phi}\left(x^{\mu}, z\right)=\sum_{n} \phi_{n}\left(x^{\mu}\right) e^{i n z / R}$

Dimensional reduction

Kaluza (1921): Unification of General Relativity and Maxwell theory (with scalar) in $\mathrm{D}=5$ in presence of isometry
Klein (1926): Fifth dimension is compact and small

Massless field in $4+1$ dimensions: $\hat{\phi}\left(x^{\mu}, z\right)=\sum_{n} \phi_{n}\left(x^{\mu}\right) e^{i n z / R}$

$$
\partial_{\hat{\mu}} \partial^{\hat{\mu}} \hat{\phi}=\sum_{n}\left(\partial_{\mu} \partial^{\mu} \phi_{n}+m_{n}^{2} \phi_{n}\right)=0 \quad \text { con } \quad m_{n}=\frac{n}{R}
$$

5-dimensional pure gravity:

$$
\begin{array}{r}
\hat{g}_{\hat{\mu} \hat{\nu}} \longrightarrow g_{\mu \nu}+A_{\mu}+k \\
15 \longrightarrow 10+4+1 \\
g_{\mu \nu}=\hat{g}_{\mu \nu}-\frac{\hat{g}_{\mu z} \hat{g}_{\nu z}}{\hat{g}_{z z}}, \quad A_{\mu}=\frac{\hat{g}_{\mu z}}{\hat{g}_{z z}}, \quad k=\hat{g}_{z z}
\end{array}
$$

5-dimensional pure gravity:

$$
\begin{array}{r}
\hat{g}_{\hat{\mu} \hat{\nu}} \longrightarrow g_{\mu \nu}+A_{\mu}+k \\
15 \longrightarrow 10+4+1 \\
g_{\mu \nu}=\hat{g}_{\mu \nu}-\frac{\hat{g}_{\mu z} \hat{g}_{\nu z}}{\hat{g}_{z z}}, \quad A_{\mu}=\frac{\hat{g}_{\mu z}}{\hat{g}_{z z}}, \quad k=\hat{g}_{z z}
\end{array}
$$

reparametrisation $z \longrightarrow z+\xi(x) \sim U(1)$ gauge transformation

$$
\delta_{5} g_{\mu \nu}=\delta_{4} g_{\mu \nu}, \quad \delta_{5} A_{\mu}=\delta_{4} A_{\mu}+\partial_{\mu} \xi, \quad \delta_{5} k=\delta_{4} k
$$

5-dimensional pure gravity:

$$
\begin{array}{r}
\hat{g}_{\hat{\mu} \hat{\nu}} \longrightarrow g_{\mu \nu}+A_{\mu}+k \\
15 \longrightarrow 10+4+1 \\
g_{\mu \nu}=\hat{g}_{\mu \nu}-\frac{\hat{g}_{\mu z} \hat{g}_{\nu z}}{\hat{g}_{z z}}, \quad A_{\mu}=\frac{\hat{g}_{\mu z}}{\hat{g}_{z z}}, \quad k=\hat{g}_{z z}
\end{array}
$$

reparametrisation $z \longrightarrow z+\xi(x) \sim U(1)$ gauge transformation

$$
\delta_{5} g_{\mu \nu}=\delta_{4} g_{\mu \nu}, \quad \delta_{5} A_{\mu}=\delta_{4} A_{\mu}+\partial_{\mu} \xi, \quad \delta_{5} k=\delta_{4} k
$$

Einstein-Hilbert \longrightarrow Einstein-Maxwell-dilaton

$$
\begin{aligned}
S & =\frac{1}{\kappa_{5}} \int d^{5} x \sqrt{|\hat{g}|} \hat{R} \\
& =\frac{1}{\kappa_{4}} \int d^{4} x \sqrt{|g|} k\left[R+(\partial \log k)^{2}-k^{2} F_{\mu \nu} F^{\mu \nu}\right] .
\end{aligned}
$$

- Unification of gravity and electromagnetism and scalar theory through dimensional reduction
- Unification of gravity and electromagnetism and scalar theory through dimensional reduction
- Beautiful geometrical interpretation of gauge interactions
\longrightarrow theory of fibre bundles: $d \hat{s}=g_{\mu \nu} d x^{\mu} d x^{\nu}-k^{2}\left(d z+A_{\mu} d x^{\mu}\right)^{2}$
- Unification of gravity and electromagnetism and scalar theory through dimensional reduction
- Beautiful geometrical interpretation of gauge interactions
\longrightarrow theory of fibre bundles: $d \hat{s}=g_{\mu \nu} d x^{\mu} d x^{\nu}-k^{2}\left(d z+A_{\mu} d x^{\mu}\right)^{2}$
- cannot eliminate k by consistent truncation
\longrightarrow problem of moduli stabilisation
- Unification of gravity and electromagnetism and scalar theory through dimensional reduction
- Beautiful geometrical interpretation of gauge interactions
\longrightarrow theory of fibre bundles: $d \hat{s}=g_{\mu \nu} d x^{\mu} d x^{\nu}-k^{2}\left(d z+A_{\mu} d x^{\mu}\right)^{2}$
- cannot eliminate k by consistent truncation
\longrightarrow problem of moduli stabilisation
\longrightarrow theory ignored untill arrival of supergravity and string theory, who live naturally in 10 and 11 dimensions
\longrightarrow dimensional reduction necessary for realistic theory

2. Compactification in supergravity

Supergravity = Einstein-gravity coupled to bosonic and fermionic fields, invariant under local supersymmetry transformations:

$$
S=\frac{1}{2 \kappa} \int d^{D} x \sqrt{|g|}\left[R+\frac{1}{2}(\partial \phi)^{2}+\frac{1}{12} e^{\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}+\ldots\right]
$$

2. Compactification in supergravity

Supergravity = Einstein-gravity coupled to bosonic and fermionic fields, invariant under local supersymmetry transformations:

$$
S=\frac{1}{2 \kappa} \int d^{D} x \sqrt{|g|}\left[R+\frac{1}{2}(\partial \phi)^{2}+\frac{1}{12} e^{\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}+\ldots\right]
$$

- Appear as low-energy limits of string theory
- Precise content and interactions depend on dimensions and supersymmetry

Gauged Supergravities:

- Maximal susy
- Large global symm groups
- running moduli
- Max supersymm Minkowski vacuum
- Less than maximal susy
- Non-Abelian gauge groups
- Scalar potential
- No Minkowski vacuum

Gauged Supergravities:

- Maximal susy
- Large global symm groups
- running moduli
- Max supersymm Minkowski vacuum
- Less than maximal susy
- Non-Abelian gauge groups
- Scalar potential
- No Minkowski vacuum
E.g.: 5-dim maximally $S O(6)$ gauge supergravity (gravity side of AdS/CFT) $\longrightarrow 10$-dim Type IIB compactified on $\operatorname{AdS}_{5} \times S^{5}$

Presence of scalar potential:

- some fields become massive
- possibility of moduli stabilisation
- can act as cosmological constant

Presence of scalar potential:

- some fields become massive
- possibility of moduli stabilisation
- can act as cosmological constant

BUT: No-Go theorem

There are no lower-dimensional De Sitter vacua in a theory with

- Einstein-Hilbert like gravity
- compact extra dimensions
- positive energy sources

Presence of scalar potential:

- some fields become massive
- possibility of moduli stabilisation
- can act as cosmological constant

BUT: No-Go theorem

There are no lower-dimensional De Sitter vacua in a theory with

- Einstein-Hilbert like gravity
- compact extra dimensions
- positive energy sources
\longrightarrow Orientifolds: Negative tension objects, that projects out odd part of field content

Orientifolds and warped compactifications:

3-brane in $A d S_{5}: \quad d s^{2}=e^{2|z| / R_{0}} \eta^{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}$

- $z \rightarrow-z$ symmetry proyects out odd modes

Orientifolds and warped compactifications:

3-brane in $A d S_{5}: \quad d s^{2}=e^{2|z| / R_{0}} \eta^{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}$

- $z \rightarrow-z$ symmetry proyects out odd modes
- Used to cancel tadpole conditions:

Tadpole cancelation: charge on compact manifold

$$
\begin{aligned}
F_{\mu \nu}=\partial_{[\mu} A_{\nu]}+m B_{\mu \nu} & \Longrightarrow d F_{2}=m H_{3}+\rho \\
& \Longleftrightarrow 0=m \int H_{3}+Q
\end{aligned}
$$

Tadpole cancelation: charge on compact manifold

$$
\begin{aligned}
F_{\mu \nu}=\partial_{[\mu} A_{\nu]}+m B_{\mu \nu} & \Longleftrightarrow d F_{2}=m H_{3}+\rho \\
& \Longleftrightarrow 0=m \int H_{3}+Q
\end{aligned}
$$

BPS condition (no-force condition) of BPS orientifolds:
Electromagnetic attraction cancels gravitational repulsion

Tadpole cancelation: charge on compact manifold

$$
\begin{aligned}
F_{\mu \nu}=\partial_{[\mu} A_{\nu]}+m B_{\mu \nu} & \Longleftrightarrow d F_{2}=m H_{3}+\rho \\
& \Longleftrightarrow 0=m \int H_{3}+Q
\end{aligned}
$$

BPS condition (no-force condition) of BPS orientifolds:
Electromagnetic attraction cancels gravitational repulsion
BPS condition (no-force condition) of extremal black holes and p-branes:
Electromagnetic repulsion cancels gravitational attraction
\longrightarrow similarity between orientifolds and p-branes!

Orientifolds and warped compactifications:

3-brana en AdS: $\quad d s^{2}=e^{2|z| / R_{0}} \eta^{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}$

- $z \rightarrow-z$ symmetry proyects out odd modes
- Used to cancel tadpole conditions

Orientifolds and warped compactifications:

3-brana en AdS: $\quad d s^{2}=e^{2|z| / R_{0}} \eta^{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}$

- $z \rightarrow-z$ symmetry proyects out odd modes
- Used to cancel tadpole conditions
- warp factor amplifies coupling constants and masses: Hierarchy problem

Orientifolds and warped compactifications:

3-brana en AdS: $\quad d s^{2}=e^{2|z| / R_{0}} \eta^{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}$

- $z \rightarrow-z$ symmetry proyects out odd modes
- Used to cancel tadpole conditions
- warp factor amplifies coupling constants and masses: Hierarchy problem
- warp factor localises gravity to brane: Brane world scenarios

Orientifolds and warped compactifications:

3-brana en AdS: $\quad d s^{2}=e^{2|z| / R_{0}} \eta^{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}$

- $z \rightarrow-z$ symmetry proyects out odd modes
- Used to cancel tadpole conditions
- warp factor amplifies coupling constants and masses: Hierarchy problem
- warp factor localises gravity to brane: Brane world scenarios
- what about backreaction?

Example: KKLT scenario for de Sitter solutions

non-perturbative effects and anti-D3-branes lift minimum of potential

Example: KKLT scenario for de Sitter solutions

non-perturbative effects and anti-D3-branes lift minimum of potential

However:

- No exact solution known \longrightarrow delocalised (smeared) limit
\bullet Broken supersymmetry \longrightarrow instabilities?

non-perturbative effects and anti-D3-branes lift minimum of potential However:
- No exact solution known \longrightarrow delocalised (smeared) limit
\bullet Broken supersymmetry \longrightarrow instabilities?
\longrightarrow Strong corrections expected (Sometimes even cease to exist)

Important to study backreaction!!

Study backreaction by:

1. find exact solutions to full SUGRA eqns of motion
2. construct Warped Effective Field Theory (WEFT)
\longrightarrow integrate over high-energy effects of warping
\longrightarrow construct low-energy effective action

BUT: what is low energy in presence of warping?

Study backreaction by:

1. find exact solutions to full SUGRA eqns of motion
2. construct Warped Effective Field Theory (WEFT)
\longrightarrow integrate over high-energy effects of warping
\longrightarrow construct low-energy effective action

BUT: what is low energy in presence of warping?

Strategy:

- Construction of exact SUGRA solutions in 10 dimensions
- Compactify and compare with WEFT results
\longrightarrow Test reliability of WEFT

Study backreaction by:

1. find exact solutions to full SUGRA eqns of motion
2. construct Warped Effective Field Theory (WEFT)
\longrightarrow integrate over high-energy effects of warping
\longrightarrow construct low-energy effective action

BUT: what is low energy in presence of warping?

Strategy:

- Construction of exact SUGRA solutions in 10 dimensions
- Compactify and compare with WEFT results
\longrightarrow Test reliability of WEFT

Test case: Dynamical branes with extra fluxes

3. p-brane solutions

p-brane are fundamental objects in string theory

solitonic objects in supergravity

$$
\begin{aligned}
& S=\int d^{D} x \sqrt{|g|}\left[R+\partial_{\mu} \phi \partial^{\mu} \phi+e^{a \phi} F_{\mu_{1} \ldots \mu_{p+2}} F^{\mu_{1} \ldots \mu_{p+2}}\right] \\
& d s^{2}=\mathcal{H}^{\alpha}(r) \eta_{m n} d x^{m} d x^{n}-\mathcal{H}^{\beta}(r)\left[d r^{2}+r^{2} d \Omega^{2}\right], \quad e^{-2 \phi}=\mathcal{H}^{\gamma}(r), \\
& F_{m_{1} \ldots m_{p-1} i}=\varepsilon_{m_{1} \ldots m_{p-1}} \partial_{i} \mathcal{H}^{-1}(r), \quad \mathcal{H}(r)=1+\frac{M}{r^{D-p-3}}
\end{aligned}
$$

- Exact solution for α, β, γ in function of a, D, p
- Planar objects, extended in p spatial directions
- Electrically/magnetically charged under F_{p+2}
- Preserve some fraction of supersymmetry
- Generalization of electron in Maxwell theory, or black hole in General Relativity

Fundamental string (F1): cosmic string, fundamental object with $M \sim g$
[Dabholkar, Gibbons, Harvey, Ruiz Ruiz, 1990]
NS5-brane (NS5): solitonic object (cfr Dirac monopole) with magnetic charge and $M \sim \frac{1}{g^{2}}$
D-branes ($\mathrm{D} p$): Dirichlet boundary conditions for open strings with arbitrary p and $M \sim \frac{1}{g}$

Dualities: p-brane democracy: all branes are equally fundamental
[Townsend, 1995]

Rest of the talk: restrict to D6-brane in (m)IIA

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{4} e^{3 \phi / 2} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

with

$$
\begin{array}{ll}
F_{\mu \nu}=2 \partial_{[\mu} C_{\nu]}+m B_{\mu \nu} & \text { invariant under } \delta C_{\mu}=\partial_{\mu} \Lambda-m \Sigma_{\mu} \\
H_{\mu \nu \rho}=3 \partial_{[\mu} B_{\nu \rho]} & \text { invariant under } \delta B_{\mu \nu}=\partial_{[\mu} \Sigma_{\nu]}
\end{array}
$$

Rest of the talk: restrict to D6-brane in (m)IIA

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{4} e^{3 \phi / 2} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

with

$$
\begin{array}{ll}
F_{\mu \nu}=2 \partial_{[\mu} C_{\nu]}+m B_{\mu \nu} & \text { invariant under } \delta C_{\mu}=\partial_{\mu} \Lambda-m \Sigma_{\mu} \\
H_{\mu \nu \rho}=3 \partial_{[\mu} B_{\nu \rho]} & \text { invariant under } \delta B_{\mu \nu}=\partial_{[\mu} \Sigma_{\nu]}
\end{array}
$$

Standard D6-brane ($1 / 2$ supersymmetric):

$$
\begin{array}{ll}
d s^{2}=\mathcal{H}^{-\frac{1}{2}}(r) \eta_{a b} d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(r), & F_{\theta \varphi}=\partial_{r} \mathcal{H}^{-1}(r) \\
H_{\mu \nu \rho}=0=m, & \bar{\nabla}^{2} \mathcal{H}(r)=0
\end{array}
$$

\longrightarrow Cfr Dirac monopole in 10 dimensions

Outline

1. Extra dimensions: what and why
2. Compactification in supergravity
3. p-brane solutions
\longrightarrow test with dynamical branes with extra fluxes
4. Fractional dynamical branes
5. General backreacted domain walls
6. Conclusions

4. Fractional dynamical branes

Dynamical p-branes:
Dynamical branes $=$ branes with extra $W V$ dependence: $\mathcal{H}=\mathcal{H}(x, r)$

$$
\begin{aligned}
& d s^{2}=\mathcal{H}^{-\frac{1}{2}}(x, r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(x, r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
& e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(x, r), \quad F_{\theta \phi}=\partial_{r} \mathcal{H}^{-1}(x, r)
\end{aligned}
$$

where now

$$
\left[g_{i j}\right] \Rightarrow \partial_{i} \partial^{i} \mathcal{H}=0, \quad\left[g_{a b}\right] \Rightarrow \partial_{a} \partial_{b} \mathcal{H}=0, \quad\left[g_{a i}\right] \Rightarrow \partial_{i} \partial_{a} \mathcal{H}=0
$$

4. Fractional dynamical branes

Dynamical p-branes:
Dynamical branes $=$ branes with extra $W V$ dependence: $\mathcal{H}=\mathcal{H}(x, r)$

$$
\begin{aligned}
& d s^{2}=\mathcal{H}^{-\frac{1}{2}}(x, r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(x, r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
& e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(x, r), \quad F_{\theta \phi}=\partial_{r} \mathcal{H}^{-1}(x, r)
\end{aligned}
$$

where now

$$
\left[g_{i j}\right] \Rightarrow \partial_{i} \partial^{i} \mathcal{H}=0, \quad\left[g_{a b}\right] \Rightarrow \partial_{a} \partial_{b} \mathcal{H}=0, \quad\left[g_{a i}\right] \Rightarrow \partial_{i} \partial_{a} \mathcal{H}=0
$$

Hence:

$$
\begin{aligned}
\mathcal{H}(x, r) & =\mathcal{H}_{w}(x)+\mathcal{H}_{t}(r) \\
& =c_{a} x^{a}+1+\frac{Q}{r}
\end{aligned}
$$

4. Fractional dynamical branes

Dynamical p-branes:
Dynamical branes $=$ branes with extra WV dependence: $\mathcal{H}=\mathcal{H}(x, r)$

$$
\begin{aligned}
& d s^{2}=\mathcal{H}^{-\frac{1}{2}}(x, r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(x, r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right], \\
& e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(x, r), \quad F_{\theta \phi}=\partial_{r} \mathcal{H}^{-1}(x, r),
\end{aligned}
$$

where now

$$
\left[g_{i j}\right] \Rightarrow \partial_{i} \partial^{i} \mathcal{H}=0, \quad\left[g_{a b}\right] \Rightarrow \partial_{a} \partial_{b} \mathcal{H}=0, \quad\left[g_{a i}\right] \Rightarrow \partial_{i} \partial_{a} \mathcal{H}=0
$$

Hence:

$$
\begin{aligned}
\mathcal{H}(x, r) & =\mathcal{H}_{w}(x)+\mathcal{H}_{t}(r) \\
& =c_{a} x^{a}+1+\frac{Q}{r}
\end{aligned}
$$

Supersymmetric for specific value of c_{a}
What does linear WV dependence mean?

Interpretation: warped compactification

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi\right]
$$

Smeared brane Ansatz ($Q=0$):

$$
\begin{aligned}
& d s_{10}^{2}=e^{2 \alpha \chi} \tilde{g}_{a b}(x) d x^{a} d x^{b}-e^{2 \beta \chi}\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
& \phi=\phi(x)
\end{aligned}
$$

Interpretation: warped compactification

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi\right]
$$

Smeared brane Ansatz ($Q=0$):

$$
\begin{aligned}
& d s_{10}^{2}=e^{2 \alpha \chi} \tilde{g}_{a b}(x) d x^{a} d x^{b}-e^{2 \beta \chi}\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
& \phi=\phi(x)
\end{aligned}
$$

Calculations:

$$
R=e^{-2 \alpha \chi} \tilde{R}+e^{-2 \alpha \chi}(\partial \chi)^{2}+e^{-2 \alpha \chi} \tilde{\nabla}^{2} \chi
$$

Reduced action:

$$
S=\int d^{8} x \sqrt{|\tilde{\mid g}|}\left[\tilde{R}+\frac{1}{2} \partial_{a} \phi \partial^{a} \phi+\frac{1}{2} \partial_{a} \chi \partial^{a} \chi\right]
$$

\longrightarrow Worldvolume dependence: 7-dimensional scalars
\longrightarrow Smeared dynam D6: reduction to 7-dim domain wall with free scalars
\longrightarrow Localised dynam D6: (trivial) backreaction of domain wall and scalars

Overview:

Standard D6
dynamical D6
$\mathcal{H}=\mathcal{H}(x, r)$
free scalar fields

Overview:

Fractional p-branes:

Fractional branes $=$ branes with extra fluxes: $d F_{2}=m H_{3}+Q$

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{4} e^{3 \phi / 2} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

Solution:

$$
\begin{aligned}
& d s^{2}=\mathcal{H}^{-\frac{1}{2}}(r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
& e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(r), \quad F_{\theta \varphi}=\partial_{r} \mathcal{H}^{-1}(r), \quad H_{r \theta \phi}=m r^{2} \sin \theta
\end{aligned}
$$

where now

$$
\left[g_{i j}\right] \Rightarrow \partial_{i} \partial^{i} \mathcal{H}=H_{r \theta \varphi} H^{r \theta \varphi}
$$

Fractional p-branes:

Fractional branes $=$ branes with extra fluxes: $d F_{2}=m H_{3}+Q$

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{4} e^{3 \phi / 2} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

Solution:

$$
\begin{aligned}
& d s^{2}=\mathcal{H}^{-\frac{1}{2}}(r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right], \\
& e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(r), \quad F_{\theta \varphi}=\partial_{r} \mathcal{H}^{-1}(r), \quad H_{r \theta \phi}=m r^{2} \sin \theta
\end{aligned}
$$

where now

$$
\left[g_{i j}\right] \Rightarrow \partial_{i} \partial^{i} \mathcal{H}=H_{r \theta \varphi} H^{r \theta \varphi}
$$

Hence:

$$
\mathcal{H}(r)=1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
$$

BUT: No longer supersymetric!

Interpretation: warped compactification (again)

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

Smeared brane Ansatz ($Q=0$):

$$
\begin{array}{ll}
d s_{10}^{2}=e^{2 \alpha \chi} \tilde{g}_{a b}(x) d x^{a} d x^{b}-e^{2 \beta \chi}\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
\phi=\phi(x), & H_{r \theta \varphi}=h r^{2} \sin \theta
\end{array}
$$

Interpretation: warped compactification (again)

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

Smeared brane Ansatz ($Q=0$):

$$
\begin{array}{ll}
d s_{10}^{2}=e^{2 \alpha \chi} \tilde{g}_{a b}(x) d x^{a} d x^{b}-e^{2 \beta \chi}\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
\phi=\phi(x), & H_{r \theta \varphi}=h r^{2} \sin \theta
\end{array}
$$

Calculations:

$$
R=e^{-2 \alpha \chi} \tilde{R}+e^{-2 \alpha \chi}(\partial \chi)^{2}+e^{-2 \alpha \chi} \tilde{\nabla}^{2} \chi \quad H_{\mu \nu \rho} H^{\mu \nu \rho}=e^{a \chi} h^{2}
$$

Reduced action:

$$
S=\int d^{7} x \sqrt{|\tilde{g}|}\left[\tilde{R}+\frac{1}{2} \partial_{a} \phi \partial^{a} \phi+\frac{1}{2} \partial_{a} \chi \partial^{a} \chi-e^{a \chi+b \phi} h^{2}+e^{c \phi} m^{2}\right]
$$

\longrightarrow Non-trivial scalar potential: gauged SUGRA from flux compactification
\longrightarrow Smeared fractional D6: reduction to 7-dim Minkowski space (no scalars)
\longrightarrow Localised fractional D6: backreaction of orientifold flux compactification

Overview and strategy:

Standard D6	
\swarrow	
dynamical D6	fractional D6
$\mathcal{H}=\mathcal{H}(x, r)$	$d F_{2}=m H_{3}+Q$
free scalar fields	non-trivial potential

Overview and strategy:

Standard D6

dynamical D6
$\mathcal{H}=\mathcal{H}(x, r)$
free scalar fields
fractional D6
$d F_{2}=m H_{3}+Q$ non-trivial potential
\searrow
fractional, dynamical D6

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}(x, r) \quad \& \quad d F_{2}=m H_{3}+Q \\
\text { scalars in non-trivial potential! }
\end{gathered}
$$

\longrightarrow scalars probe potential!

Fractional dynamical p-branes:
Fluxes + worldvolume dependence:

$$
S=\int d^{D} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{4} e^{3 \phi / 2} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

Solution: $\quad d s^{2}=\mathcal{H}^{-\frac{1}{2}}(x, r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(x, r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right]$,

$$
e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(x, r), \quad F_{\theta \phi}=\partial_{r} \mathcal{H}^{-1}(x, r), \quad H_{r \theta \phi}=m r^{2}
$$

where now

$$
\left[g_{i j}\right] \Rightarrow \partial_{i} \partial^{i} \mathcal{H}=H_{r \theta \varphi} H^{r \theta \varphi} \quad\left[g_{a b}\right] \Rightarrow \partial_{a} \partial_{b} \mathcal{H}=0, \quad\left[g_{a i}\right] \Rightarrow \partial_{i} \partial_{a} \mathcal{H}=0
$$

Fractional dynamical p-branes:
Fluxes + worldvolume dependence:

$$
S=\int d^{D} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{4} e^{3 \phi / 2} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

Solution: $\quad d s^{2}=\mathcal{H}^{-\frac{1}{2}}(x, r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(x, r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right]$,

$$
e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(x, r), \quad F_{\theta \phi}=\partial_{r} \mathcal{H}^{-1}(x, r), \quad H_{r \theta \phi}=m r^{2}
$$

where now
$\left[g_{i j}\right] \Rightarrow \partial_{i} \partial^{i} \mathcal{H}=H_{r \theta \varphi} H^{r \theta \varphi} \quad\left[g_{a b}\right] \Rightarrow \partial_{a} \partial_{b} \mathcal{H}=0, \quad\left[g_{a i}\right] \Rightarrow \partial_{i} \partial_{a} \mathcal{H}=0$
Hence:

$$
\begin{aligned}
\mathcal{H}(x, r) & =\mathcal{H}_{w}(x)+\mathcal{H}_{t}(r) \\
& =m z+1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
\end{aligned}
$$

$\longrightarrow 1 / 4$ supersymmetric
\longrightarrow Still sum of linear WV part and transversal dependence

Interpretation: warped compactification

$$
S=\int d^{10} x \sqrt{|g|}\left[R+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{6} e^{-\phi} H_{\mu \nu \rho} H^{\mu \nu \rho}-\frac{1}{2} e^{5 \phi / 2} m^{2}\right]
$$

Smeared brane Ansatz ($Q=0$):

$$
\begin{array}{cr}
d s_{10}^{2}=e^{2 \alpha \chi(x, r)} \tilde{g}_{a b}(x) d x^{a} d x^{b}-e^{2 \beta \chi(x, r)}\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
\phi=\phi(x, r), & H_{r \theta \varphi}=h r^{2} \sin \theta
\end{array}
$$

Reduced action:

$$
S=\int d^{8} x \sqrt{|\tilde{g}|}\left[\tilde{R}+\frac{1}{2} \partial_{a} \phi \partial^{a} \phi+\frac{1}{2} \partial_{a} \chi \partial^{a} \chi-e^{a \chi+b \phi} h^{2}+e^{c \phi} m^{2}\right]
$$

We expect a supersymmetric domain wall solution with running scalars... Let's look for it...

Most general susy domain wall of $S O(2)$ gauged $\mathrm{D}=7$ maximal SUGRA

$$
S=\int d^{8} x \sqrt{|\tilde{g}|}\left[\tilde{R}+\frac{1}{2} \partial_{a} \phi \partial^{a} \phi+\frac{1}{2} \partial_{a} \chi \partial^{a} \chi-e^{a \chi+b \phi} h^{2}+e^{c \phi} m^{2}\right]
$$

is given by

$$
\begin{array}{ll}
d s_{7}^{2}=\left(f_{1} f_{2}\right)^{\frac{1}{10}} \eta_{i j} d x^{i} d x^{j}-\left(f_{1} f_{2}\right)^{-\frac{2}{5}} d z^{2} \\
e^{\phi}=f_{1}^{\frac{1}{4}} f_{1}^{-\frac{5}{8}}, & e^{\chi}=\left(f_{1}^{-\frac{3}{4}} f_{1}^{-\frac{1}{8}}\right)^{\sqrt{\frac{3}{5}}}, \\
f_{1}=2 h z+c_{1}, & f_{2}=2 m z+c_{2}
\end{array}
$$

Most general susy domain wall of $S O(2)$ gauged $\mathrm{D}=7$ maximal SUGRA

$$
S=\int d^{8} x \sqrt{|\tilde{g}|}\left[\tilde{R}+\frac{1}{2} \partial_{a} \phi \partial^{a} \phi+\frac{1}{2} \partial_{a} \chi \partial^{a} \chi-e^{a \chi+b \phi} h^{2}+e^{c \phi} m^{2}\right]
$$

is given by
[Bergshoeff, Nielsen, Roest, 2004]

$$
\begin{array}{ll}
d s_{7}^{2}=\left(f_{1} f_{2}\right)^{\frac{1}{10}} \eta_{i j} d x^{i} d x^{j}-\left(f_{1} f_{2}\right)^{-\frac{2}{5}} d z^{2} \\
e^{\phi}=f_{1}^{\frac{1}{4}} f_{1}^{-\frac{5}{8}}, & e^{\chi}=\left(f_{1}^{-\frac{3}{4}} f_{1}^{-\frac{1}{8}}\right)^{\sqrt{\frac{3}{5}}}, \\
f_{1}=2 h z+c_{1}, & f_{2}=2 m z+c_{2}
\end{array}
$$

Change of variables: $S O(2)$ rotation $(\phi, \chi) \longrightarrow(x, u)$

$$
V=h^{2} e^{a \chi+b \phi}-m^{2} e^{c \phi}=e^{\gamma x}\left[h e^{-u}-m e^{u}\right]^{2}
$$

Special case: in the minimum of the potential

$$
V=0 \Longleftrightarrow e^{2 u}=\frac{h}{m} \Longleftrightarrow f_{1}=\frac{h}{m} f_{2}
$$

\longrightarrow precisely our case of smeared dynamical fractional D6!

Our case:

$$
\begin{aligned}
& d s^{2}=\mathcal{H}^{-\frac{1}{2}}(x, r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(x, r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right], \\
& e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(x, r), \quad F_{\theta \phi}=\partial_{r} \mathcal{H}^{-1}(x, r), \quad H_{r \theta \phi}=m r^{2}
\end{aligned}
$$

with

$$
\mathcal{H}(x, r)=\mathcal{H}_{w}(x)+\mathcal{H}_{t}(r)=m z+1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
$$

\longrightarrow Extra fluxes: Non-trivial potential of gauged supergravity Worldvolume dependence induce running scalars

Our case:

$$
\begin{aligned}
& d s^{2}=\mathcal{H}^{-\frac{1}{2}}(x, r) \eta_{a b}(x) d x^{a} d x^{b}-\mathcal{H}^{\frac{7}{8}}(x, r)\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right], \\
& e^{-2 \phi}=\mathcal{H}^{-\frac{3}{4}}(x, r), \quad F_{\theta \phi}=\partial_{r} \mathcal{H}^{-1}(x, r), \quad H_{r \theta \phi}=m r^{2}
\end{aligned}
$$

with

$$
\mathcal{H}(x, r)=\mathcal{H}_{w}(x)+\mathcal{H}_{t}(r)=m z+1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
$$

\longrightarrow Extra fluxes: Non-trivial potential of gauged supergravity Worldvolume dependence induce running scalars
\longrightarrow Smeared dynam D6: reduction to 7-dim domain wall with scalars
\longrightarrow Localised dynam D6: backreaction of domain wall and scalars
\longrightarrow scalars run in minimum of potential: free on shell! \Rightarrow linear dependence!

5. General backreacted domain walls

Dynamical fractional brane is special case $f_{1}=\frac{h}{m} f_{2}$ of general domain wall

$$
\begin{array}{ll}
d s_{7}^{2}=\left(f_{1} f_{2}\right)^{\frac{1}{10}} \eta_{i j} d x^{i} d x^{j}-\left(f_{1} f_{2}\right)^{-\frac{2}{5}} d z^{2} \\
e^{\phi}=f_{1}^{\frac{1}{4}} f_{1}^{-\frac{5}{8}}, & e^{\chi}=\left(f_{1}^{-\frac{3}{4}} f_{1}^{-\frac{1}{8}}\right)^{\sqrt{\frac{3}{5}}}, \\
f_{1}=2 h z+c_{1}, & f_{2}=2 m z+c_{2}
\end{array}
$$

with a scalar running in the minimum of the potential.

5. General backreacted domain walls

Dynamical fractional brane is special case $f_{1}=\frac{h}{m} f_{2}$ of general domain wall

$$
\begin{array}{ll}
d s_{7}^{2}=\left(f_{1} f_{2}\right)^{\frac{1}{10}} \eta_{i j} d x^{i} d x^{j}-\left(f_{1} f_{2}\right)^{-\frac{2}{5}} d z^{2} \\
e^{\phi}=f_{1}^{\frac{1}{4}} f_{1}^{-\frac{5}{8}}, & e^{\chi}=\left(f_{1}^{-\frac{3}{4}} f_{1}^{-\frac{1}{8}}\right)^{\sqrt{\frac{3}{5}}}, \\
f_{1}=2 h z+c_{1}, & f_{2}=2 m z+c_{2}
\end{array}
$$

with a scalar running in the minimum of the potential.
Then $f_{1} \neq \frac{h}{m} f_{2}$ represents supersymmetric domain walls with non-trivial running scalar

\longrightarrow Localised solution: Backreaction of running scalar
\longrightarrow Supersymmetric restricts form of Ansatz

Most general supersymmetric Ansatz of this form

$$
\begin{aligned}
& d s^{2}=S^{-1 / 2} \eta_{i j} d x^{i} d x^{j}+K S^{-1 / 2} d z^{2}+K S^{1 / 2}\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
& e^{\phi}=K^{1 / 2} S^{-3 / 4}, \quad F_{\theta \varphi}=-\partial_{r} S, \quad H_{r \theta \varphi}=\partial_{\tilde{z}}(K S), \quad H_{z \theta \varphi}=\partial_{r} K,
\end{aligned}
$$

with

$$
\nabla^{2} S+\frac{1}{2} \partial_{z}^{2} S^{2}=-Q_{6} \delta, \quad m g_{s} K=\partial_{z} S
$$

Most general supersymmetric Ansatz of this form

$$
\begin{aligned}
& d s^{2}=S^{-1 / 2} \eta_{i j} d x^{i} d x^{j}+K S^{-1 / 2} d z^{2}+K S^{1 / 2}\left[d r^{2}+r^{2} d \Omega_{2}^{2}\right] \\
& e^{\phi}=K^{1 / 2} S^{-3 / 4}, \quad F_{\theta \varphi}=-\partial_{r} S, \quad H_{r \theta \varphi}=\partial_{\tilde{z}}(K S), \quad H_{z \theta \varphi}=\partial_{r} K,
\end{aligned}
$$

with

$$
\nabla^{2} S+\frac{1}{2} \partial_{z}^{2} S^{2}=-Q_{6} \delta, \quad m g_{s} K=\partial_{z} S
$$

\longrightarrow Determine K and S such that the solution reduces to domain wall solution in smeared case:

Laurent series: $\quad S(r, \tilde{z})=\sum_{n=-1}^{\infty} a_{n}(z) r^{n}$
Imamura eqns: $n(n+1) a_{n}=-\frac{1}{2} \partial_{z}^{2}\left(\sum_{k=0}^{n} a_{k-1} a_{n-k-1}\right)$
z-independent charge: $a_{-1}=Q$
in smeared case $H_{r \theta \varphi}=h: \quad \frac{1}{2} \partial_{z}^{2} a_{0}^{2}=m h$

Solution no too illuminating:

$$
\begin{aligned}
& S(r, \tilde{z})=\sum_{n=-1}^{\infty} a_{n}(z) r^{n} \\
& m g_{s} K=\partial_{z} S \text { with } \\
& a_{1}=-\beta \frac{g_{s} m h Q_{6}}{2 a_{0}^{3}} \\
& a_{2}=-\frac{1}{6} g_{s} m h+\beta\left(g_{s}^{2} m h Q_{6}\right)^{2}\left(\frac{1}{a_{0}^{5}}-\frac{5 \beta}{4 a_{0}^{7}}\right) \\
& a_{3}=\beta\left(g_{s} m h\right)^{2}\left(g_{s} Q_{6}\right)\left(\frac{1}{4 a_{0}^{4}}-\frac{\beta}{3 a_{0}^{6}}\right)+\beta\left(g_{s}^{2} m h Q_{6}\right)^{3}\left(-\frac{5}{2 a_{0}^{7}}+\frac{35 \beta}{4 a_{0}^{9}}-\frac{105 \beta^{2}}{16 a_{0}^{11}}\right)
\end{aligned}
$$

Warped effective potential and gauged SUGRA potential coincide in minimum

6. Summary and outlook

- Flux compactifications can lead to interesting results, if done correctly, taking backreaction in account!
* Adding fluxes leads to lower-dim theories with non-trivial potentials
* Worldvolume dependences leads to lower-dim dynamical scalars

6. Summary and outlook

- Flux compactifications can lead to interesting results, if done correctly, taking backreaction in account!
\star Adding fluxes leads to lower-dim theories with non-trivial potentials
* Worldvolume dependences leads to lower-dim dynamical scalars
- Fractional dynamical branes describe on-shell free scalars

$$
\mathcal{H}(x, r)=\mathcal{H}_{w}(x)+\mathcal{H}_{t}(r)=m x+1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
$$

6. Summary and outlook

- Flux compactifications can lead to interesting results, if done correctly, taking backreaction in account!
* Adding fluxes leads to lower-dim theories with non-trivial potentials
* Worldvolume dependences leads to lower-dim dynamical scalars
- Fractional dynamical branes describe on-shell free scalars

$$
\mathcal{H}(x, r)=\mathcal{H}_{w}(x)+\mathcal{H}_{t}(r)=m x+1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
$$

- General supersymmetric brane solutions with non-trivial running scalars

$$
\mathcal{H}(x, r) \neq \mathcal{H}_{w}(x)+\mathcal{H}_{t}(r)
$$

- What about non-supersymmetric case?
* Fractional dynamical D6 found in 1998:

$$
\mathcal{H}(x, r)=c_{a} x^{a}+1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
$$

solution for general $\mathcal{H}_{w}=c_{a} x^{a}$, but supersymmetric for $\mathcal{H}_{w}=m x$
\longrightarrow what do other solutions represent?

- What about non-supersymmetric case?
* Fractional dynamical D6 found in 1998:

$$
\mathcal{H}(x, r)=c_{a} x^{a}+1+\frac{Q}{r}+\frac{1}{6} m^{2} r^{2}
$$

solution for general $\mathcal{H}_{w}=c_{a} x^{a}$, but supersymmetric for $\mathcal{H}_{w}=m x$
\longrightarrow what do other solutions represent?

* Supersymmetric solutions come from superpotencial W :

$$
\begin{aligned}
V & =e^{2 \gamma x}\left[h e^{-u}-m e^{u}\right]^{2} \\
& =\frac{1}{2}\left(\partial_{x} W\right)^{2}+\frac{1}{2}\left(\partial_{u} W\right)^{2}-\frac{3}{10} W^{2}
\end{aligned}
$$

with

$$
W=e^{\gamma x}\left[h e^{-u}+m e^{u}+C\right]
$$

$C=0$: real superpotential, real supersymmetry transf.
$C \neq 0$: fake superpotential, only formal transform.
\longrightarrow Strong enough to restrict solutions?

Thank you!

