

Black Hole Thermodynamics

Bert Janssen

Dpto. de Física Teórica y del Cosmos Centro Andaluz de Física de Partículas Elementales

B. Janssen (UGR)

Granada, January 16th, 2015

1. General Relativity: a quick review

- 1. General Relativity: a quick review
- 2. The Schwarzschild black hole
- 3. The Kerr black hole

- 1. General Relativity: a quick review
- 2. The Schwarzschild black hole
- 3. The Kerr black hole
- 4. Penrose Process
- 5. The area theorem

- 1. General Relativity: a quick review
- 2. The Schwarzschild black hole
- 3. The Kerr black hole
- 4. Penrose Process
- 5. The area theorem
- 6. The laws of black hole mechanics

- 1. General Relativity: a quick review
- 2. The Schwarzschild black hole
- 3. The Kerr black hole
- 4. Penrose Process
- 5. The area theorem
- 6. The laws of black hole mechanics
- 7. Quantum black holes:
 - \longrightarrow Counting of microstates
 - \longrightarrow Information paradox

Disclaimer:

Main goal of this talk is to expose open issues , not to propose concrete solutions...

0. Selected bibliography

- T. Jacobson, Introductory Lectures on Black Hole Thermodynamics
- S. Mathur, The information paradox: a pedagogical introduction, arXiv:0909.1038 [hep-th]
- Misner, Thorne & Wheeler, *Gravitation*, 1970
- E. Poisson, *A Relativist's Toolkit*, Cambridge University Press, 2004
- P. Townsend, *Black Holes*, arXiv:gr-qc/9707012
- R. Wald, *Quantum field theory in curved spacetime and black hole theormodynamics*, Bangalore Pres, 1994
- R. Wald, The Thermodynamics of Black Holes, arXiv:gr-qc/9912119
- Wikipedia (english): Black Hole thermodynamics, Information paradox, Holographic Principle, ...

1. General Relativity: a quick review

Gravity = manifestation of curved spacetime

John A. Wheeler:

Matter says space how to curve Space says matter how to move

1. General Relativity: a quick review

Gravity = manifestation of curved spacetime

John A. Wheeler:

Matter says space how to curve Space says matter how to move

• Spacetime = 4-dim Lorentzian manifold, equiped with metric $g_{\mu\nu}$ and Levi-Civita connection $\Gamma^{\rho}_{\mu\nu}$.

$$g_{\mu\nu} \implies \Gamma^{\rho}_{\mu\nu} \implies R^{\lambda}_{\mu\nu\rho}$$

• Equivalence Principle: Weight can be locally gauged away Inhomogeneities of gravitational field are shown in tidal effects

weight ~ $\Gamma^{\rho}_{\mu\nu}$, tidal forces ~ $R_{\mu\nu\rho}^{\lambda}$

• Equivalence Principle: Weight can be locally gauged away Inhomogeneities of gravitational field are shown in tidal effects

weight ~
$$\Gamma^{\rho}_{\mu\nu}$$
, tidal forces ~ $R_{\mu\nu\rho}^{\lambda}$

• Einstein equations: relation between curvature and matter content

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\kappa \left[F_{\mu\rho} F_{\nu}^{\ \rho} - \frac{1}{4} g_{\mu\nu} F_{\rho\lambda} F^{\rho\lambda} \right] - \frac{\kappa m}{4\pi} u^{\mu} u^{\nu} \delta(x - x(\tau))$$

$$\nabla_{\mu} F^{\mu\nu} = q \dot{x}^{\nu} \, \delta(x - x(\tau))$$

$$m \left(\ddot{x}^{\rho} + \Gamma^{\rho}_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} \right) = q \, \dot{x}_{\mu} F^{\mu\rho}$$

- \longrightarrow system of 10 + N non-linear coupled 2nd order partial diff eqns for $g_{\mu\nu}(x)$ and $A_{\mu}(x)$ and $x^{\mu}(\tau)$
- \rightarrow in general extremely difficult to solve!

2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution

[Schwarzschild, 1916]

$$ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

- (External region of) spherically symmetric object with mass m = M/GIn GR, mass is only asymptotically defined: $g_{tt} \approx 1 + Gmr^{-1} + ...$
- Singular for r = 0 and r = 2M:

2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution

[Schwarzschild, 1916]

$$ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

- (External region of) spherically symmetric object with mass m = M/GIn GR, mass is only asymptotically defined: $g_{tt} \approx 1 + Gmr^{-1} + ...$
- Singular for r = 0 and r = 2M:

Curvature invariante $R_{\mu\nu\rho\lambda}R^{\mu\nu\rho\lambda} = 48 G^2 m^2 r^{-6}$

 $\rightarrow r = 0$ is a physical singularity

is point of infinite tidal forces

2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution

[Schwarzschild, 1916]

$$ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

- (External region of) spherically symmetric object with mass m = M/GIn GR, mass is only asymptotically defined: $g_{tt} \approx 1 + Gmr^{-1} + ...$
- Singular for r = 0 and r = 2M:

Curvature invariante $R_{\mu\nu\rho\lambda}R^{\mu\nu\rho\lambda} = 48 G^2 m^2 r^{-6}$

 $\rightarrow r = 0$ is a physical singularity

is point of infinite tidal forces

- $\longrightarrow r = 2M \text{ is a coordinate singularity} \\ \longrightarrow \text{Schwarzschild radius}$
- Eddington-Finkelstein coordinates: $\tilde{t} = t + 2M \log(r 2M)$

$$ds^2 = \left(1 - \frac{2M}{r}\right)d\tilde{t}^2 - \frac{4M}{r}d\tilde{t}dr - \left(1 + \frac{2M}{r}\right)dr^2 - r^2d\Omega_2^2$$

- \longrightarrow Lightcones incline towards singularity
- \longrightarrow r = 2M: surface of infinite redshift

 \rightarrow *r* = 2*M* point of no return: light and matter end inevitably in singularity

- \longrightarrow Lightcones incline towards singularity
- \longrightarrow r = 2M: surface of infinite redshift
- \rightarrow r = 2M point of no return: light and matter end inevitably in singularity

 \rightarrow No causal influences can travel from r < 2M to r > 2M [Finkelstein, 1958] $\rightarrow r = 2M$ is an event horizon: one-dimensional causal membrane

3. The Kerr solution

Metric of stationary axially symmetric vacuum solution

[Kerr, 1963]

$$ds^{2} = \frac{r^{2} - 2Mr + a^{2}\cos^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dt^{2} + \frac{4Mar\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dtd\varphi - \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2Mr + a^{2}} dr^{2}$$
$$- (r^{2} + a^{2}\cos^{2}\theta) d\theta^{2} - \left[r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}\right] \sin^{2}\theta d\varphi^{2}$$

- Rotating, axially symmetric object with mass m = M/G and angular momentum J = a/M
- Unique solution with these characteristics!

3. The Kerr solution

Metric of stationary axially symmetric vacuum solution

[Kerr, 1963]

$$ds^{2} = \frac{r^{2} - 2Mr + a^{2}\cos^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dt^{2} + \frac{4Mar\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dtd\varphi - \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2Mr + a^{2}} dr^{2}$$
$$- (r^{2} + a^{2}\cos^{2}\theta) d\theta^{2} - \left[r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}\right] \sin^{2}\theta d\varphi^{2}$$

- Rotating, axially symmetric object with mass m = M/G and angular momentum J = a/M
- Unique solution with these characteristics!

Kerr-Newmann (idem with charge Q) is unique solution of stationary blackhole! \longrightarrow Uniqueness theorems[Israel; Hawking; Carter; 1965-1975]

- stationary \implies axially symmetric \implies Kerr-Newmann
- static \implies spherically symmetric \implies Reissner-Nordström

Black hole have no hair: completely determined by *M*, *Q* and *J*!

$$ds^{2} = \frac{r^{2} - 2Mr + a^{2}\cos^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dt^{2} + \frac{4Mar\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dtd\varphi - \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2Mr + a^{2}} dr^{2}$$
$$- (r^{2} + a^{2}\cos^{2}\theta) d\theta^{2} - \left[r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}\right] \sin^{2}\theta d\varphi^{2}$$

• Physical singularity at r = a and $\theta = 0 \longrightarrow \text{ring singularity!}$

$$ds^{2} = \frac{r^{2} - 2Mr + a^{2}\cos^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dt^{2} + \frac{4Mar\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dtd\varphi - \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2Mr + a^{2}} dr^{2}$$
$$- (r^{2} + a^{2}\cos^{2}\theta) d\theta^{2} - \left[r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}\right] \sin^{2}\theta d\varphi^{2}$$

- Physical singularity at r = a and $\theta = 0 \longrightarrow \text{ring singularity}!$
- $g^{rr} = 0$: Inner and outer horizon at $r = M \pm \sqrt{M^2 a^2} \equiv R_{\pm}$ \longrightarrow limit of static region

$$ds^{2} = \frac{r^{2} - 2Mr + a^{2}\cos^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dt^{2} + \frac{4Mar\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta} dtd\varphi - \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2Mr + a^{2}} dr^{2}$$
$$- (r^{2} + a^{2}\cos^{2}\theta) d\theta^{2} - \left[r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}\right] \sin^{2}\theta d\varphi^{2}$$

- Physical singularity at r = a and $\theta = 0 \longrightarrow \text{ring singularity}!$
- $g^{rr} = 0$: Inner and outer horizon at $r = M \pm \sqrt{M^2 a^2} \equiv R_{\pm}$ \longrightarrow limit of static region
- $g_{tt} = 0$: Surfaces of infinite redshift at $r = M \pm \sqrt{M^2 a^2 \cos^2 \theta} \equiv S_{\pm}$
 - \rightarrow limit of stationary region
 - \rightarrow Effects of frame dragging

Frame dragging:

General axially symmetric stationary metric:

$$ds^2 = g_{tt} dt^2 + 2g_{t\varphi} dt d\varphi + g_{rr} dr^2 + g_{\theta\theta} d\theta^2 + g_{\varphi\varphi} d\varphi^2$$

Stationary observer: rotation with constant velocity in equatorial plane

Frame dragging:

General axially symmetric stationary metric:

$$ds^2 = g_{tt} dt^2 + 2g_{t\varphi} dt d\varphi + g_{rr} dr^2 + g_{\theta\theta} d\theta^2 + g_{\varphi\varphi} d\varphi^2$$

Stationary observer: rotation with constant velocity in equatorial plane

 $\longrightarrow \text{Angular velocity:} \quad \Omega = \frac{d\varphi}{dt} = \frac{\dot{\varphi}}{\dot{t}}$ $\longrightarrow \text{Angular momentum:} \quad L = -g_{\varphi\mu}p^{\mu} = -m_0 \left(g_{t\varphi}\dot{t} + g_{\varphi\varphi}\dot{\varphi}\right)$

Frame dragging:

General axially symmetric stationary metric:

$$ds^{2} = g_{tt} dt^{2} + 2g_{t\varphi} dt d\varphi + g_{rr} dr^{2} + g_{\theta\theta} d\theta^{2} + g_{\varphi\varphi} d\varphi^{2}$$

Stationary observer: rotation with constant velocity in equatorial plane

 $\longrightarrow \text{Angular velocity:} \quad \Omega = \frac{d\varphi}{dt} = \frac{\dot{\varphi}}{\dot{t}}$ $\rightarrow \text{Angular momentum:} \quad L = -g_{\varphi\mu}p^{\mu} = -m_0 \left(g_{t\varphi}\dot{t} + g_{\varphi\varphi}\dot{\varphi}\right)$

Zero angular momentum observer: dragged along with rotation

$$L = 0 \qquad \Longrightarrow \qquad \Omega_0 = -\frac{g_{t\varphi}}{g_{\varphi\varphi}} \neq 0$$

Lense-Thirring effect for Earth: Prediccion: -39, 2 mili-arcsec/year GPB: $-37, 2 \pm 7, 2$ mili-arcsec/year

[Gravity Probe B, 2011]

Ergoregion: Frame dragging limits velocities of stationary observers

- Region I ($g_{tt} > 0$): both co-rotation and counter-rotation possible
- Region II $(g_{tt} < 0, g^{rr} > 0)$: only co-rotation possible
- Region III $(g^{rr} < 0)$: no stable rotation

Ergoregion is not trapped surface!

- Region I: static observers; escape to infinity
- Region II: stationary non-static observers; escape to infinity
- Region III: non-stationary, trapped observers

4. The Penrose process

Energy at infinity (seen by asymptotic observer)

$$E = t_{\mu} p^{\mu} = g_{t\mu} p^{\mu} = g_{tt} p^{t} + g_{t\varphi} p^{\varphi}$$

4. The Penrose process

Energy at infinity (seen by asymptotic observer)

$$E = t_{\mu} p^{\mu} = g_{t\mu} p^{\mu} = g_{tt} p^{t} + g_{t\varphi} p^{\varphi}$$

In ergoregion: $g_{tt} < 0$:

$$E < 0 \qquad \Longleftrightarrow \qquad p^{\varphi} < -\frac{g_{tt}}{g_{t\varphi}} p^t$$

NB: E < 0 only for asymptotic observer. Local observer sees E > 0!

Penrose process: extracting energy from black hole!

Energy and angular momentum conservation: $A \longrightarrow B + C$

$$E_A = E_B + E_C, \qquad \qquad L_A = L_B + L_B$$

Penrose process: extracting energy from black hole!

Energy and angular momentum conservation: $A \longrightarrow B + C$

$$E_A = E_B + E_C, \qquad \qquad L_A = L_B + L_B$$

Launch particle such that $E_B < 0$:

 $\Delta M = E_B = E_A - E_C < 0$

$$\Delta J = L_B = L_A - L_C < 0$$

• $\Delta M < 0$, $\Delta J < 0$: Black hole loses mass and angular momentum!

 \rightarrow black holes are not just the sinks of the universe!

• Ejection point Static limit

Misner, Thorme & Wheeler: Advanced society's recycling scheme

Misner, Thorme & Wheeler: Advanced society's recycling scheme

 \longrightarrow CT12: Sensibilidad hacia temas medioambientales

5. The area theorem

The area A of the horizon of a black hole never decreases in a physicalprocess, not even in a Penrose process[Hawking, 1971]

$$A = 4\pi \left[2M^2 + 2M\sqrt{M^2 - a^2} \right]$$
 (Kerr)

5. The area theorem

The area *A* of the horizon of a black hole never decreases in a physical process, not even in a Penrose process [Hawking, 1971]

$$A = 4\pi \left[2M^2 + 2M\sqrt{M^2 - a^2} \right]$$
 (Kerr)

The irreducible mass M_* of a black hole never decreases in a physical proces,not even in a Penrose process[Christodoulou & Ruffini, 1971]

$$M^2 = M_*^2 + \frac{J^2}{4M_*^2}$$
 (Kerr)

with

$$M_*^2 = \frac{1}{4} \left[2M^2 + 2M\sqrt{M^2 - a^2} \right]$$
 (Kerr)

5. The area theorem

The area *A* of the horizon of a black hole never decreases in a physical process, not even in a Penrose process [Hawking, 1971]

$$A = 4\pi \left[2M^2 + 2M\sqrt{M^2 - a^2} \right]$$
 (Kerr)

The irreducible mass M_* of a black hole never decreases in a physical proces, not even in a Penrose process [Christodoulou & Ruffini, 1971]

$$M^2 = M_*^2 + \frac{J^2}{4M_*^2}$$
 (Kerr)

with

$$M_*^2 = \frac{1}{4} \left[2M^2 + 2M\sqrt{M^2 - a^2} \right]$$
 (Kerr)

In Penrose process: $\Delta M \leq \Omega_H \Delta J$

- non-optimal process: $\Delta M < \Omega_H \Delta J \implies \Delta M_* > 0$ (irreversable)
- optimal process: $\Delta M = \Omega_H \Delta J \implies \Delta M_* = 0$ (reversable)

So far...

- No-hair theorems: unique 3-parameter family of stationary black hole solutions, completely characterised by *M*, *Q* and *J*
- Penrose process: possible to extract (certain amount of) work from black holes $\Delta M \leq \Omega_H \Delta J$
- Area theorem: area $A = 16\pi M_*^2$ never descreases in physical processes, and only constant in reversable processes.
So far...

- No-hair theorems: unique 3-parameter family of stationary black hole solutions, completely characterised by *M*, *Q* and *J*
- Penrose process: possible to extract (certain amount of) work from black holes $\Delta M \leq \Omega_H \Delta J$
- Area theorem: area $A = 16\pi M_*^2$ never descreases in physical processes, and only constant in reversable processes.

 \rightarrow smells like mechanical system! $\rightarrow A = 16\pi M_*^2$ smells like entropy...

So far...

- No-hair theorems: unique 3-parameter family of stationary black hole solutions, completely characterised by *M*, *Q* and *J*
- Penrose process: possible to extract (certain amount of) work from black holes $\Delta M \leq \Omega_H \Delta J$
- Area theorem: area $A = 16\pi M_*^2$ never descreases in physical processes, and only constant in reversable processes.

 \rightarrow smells like mechanical system! $\rightarrow A = 16\pi M_*^2$ smells like entropy...

 \rightarrow The analogy goes even further...

• **Zeroth law:** In stationary black holes, the surface gravity κ_H is constant along the horizon.

NB: Surface gravity κ_H = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• **Zeroth law:** In stationary black holes, the surface gravity κ_H is constant along the horizon.

NB: Surface gravity κ_H = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• **First law**: In quasi-stationary processes, *M*, *A*, *J* and *Q* vary like

$$dM = \frac{\kappa_H}{8\pi G_N} dA + \Omega_H dJ + \Phi_H dQ$$

• **Zeroth law:** In stationary black holes, the surface gravity κ_H is constant along the horizon.

NB: Surface gravity κ_H = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• **First law**: In quasi-stationary processes, *M*, *A*, *J* and *Q* vary like

$$dM = \frac{\kappa_H}{8\pi G_N} dA + \Omega_H dJ + \Phi_H dQ$$

• **Second law**: The area *A* of the black hole horizon never descreases in physical processes.

• **Zeroth law:** In stationary black holes, the surface gravity κ_H is constant along the horizon.

NB: Surface gravity κ_H = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• **First law**: In quasi-stationary processes, *M*, *A*, *J* and *Q* vary like

$$dM = \frac{\kappa_H}{8\pi G_N} dA + \Omega_H dJ + \Phi_H dQ$$

- **Second law**: The area *A* of the black hole horizon never descreases in physical processes.
- Third law: It is not possible to reduce the surface gravity κ_H to zero by physical processes in a finite time.

Compare with laws of thermodynamics:

- **Zeroth law:** In systems in thermodynamic equilibrium, the temperature *T* is constant throughout the system.
- **First law**: In quasi-stationary processes, *E*, *S*, *V* and *N* vary like

 $dE = k_B T \, dS - P \, dV + \mu \, dN,$

- **Second law**: The entropy of a closed system never descreases in physical processes.
- **Third law**: It is not possible to reduce the temperature *T* to zero by physical processes in a finite time.

Compare with laws of thermodynamics:

- **Zeroth law:** In systems in thermodynamic equilibrium, the temperature *T* is constant throughout the system.
- **First law**: In quasi-stationary processes, *E*, *S*, *V* and *N* vary like

 $dE = k_B T \, dS - P \, dV + \mu \, dN,$

- **Second law**: The entropy of a closed system never descreases in physical processes.
- **Third law**: It is not possible to reduce the temperature *T* to zero by physical processes in a finite time.

Suggests:

$M \sim E$	relativistic mass en energy
$\Omega_H dJ \sim -P dV$	work done by system
$A \sim S$	\leftrightarrow uniqueness theorems: $S = 0$
$\kappa_H \sim T$	\leftrightarrow black hole emits nothing: $T = 0$

Bardeen, Carter, Hawking: Pure analogy, no physical connection

Bardeen, Carter, Hawking: Pure analogy, no physical connectionBekenstein: Deep relation between black holes and thermodynamics!

Bardeen, Carter, Hawking: Pure analogy, no physical connectionBekenstein: Deep relation between black holes and thermodynamics!

Black holes must have non-trivial entropy, in order to satisfy Second Law of Thermodynamics

 $\longrightarrow \text{ Entropy is real and huge!} \quad S \sim A/\ell_P^2$ $\implies \text{Black hole = maximal entropy object:} \quad S \leq \frac{2\pi}{\hbar}k_B ER_0$ [Bekenstein, 1973]

Bardeen, Carter, Hawking: Pure analogy, no physical connection
Bekenstein: Deep relation between black holes and thermodynamics!

Black holes must have non-trivial entropy, in order to satisfy Second Law of Thermodynamics

- \rightarrow Entropy is real and huge! $S \sim A/\ell_P^2$ [Bekenstein, 1973] \rightarrow Black hole = maximal entropy object: $S \leq \frac{2\pi}{\hbar}k_B E R_0$

Question: How can black holes have temperature, if they do not emit anything?

 \longrightarrow Look at quantum character...

Hawking radiation

QFT in curved spacetime: black hole behaves like black body

Hawking radiation

QFT in curved spacetime: black hole behaves like black body

Two big problems:

- Counting of microstates: what is nature of entropy?
- Information paradox: is time evolution unitary?

Boltzmann: $S = \ln N$ Shannon: $S = \sum_{i} p_i \log_2 p_i$

$$M = m_{\odot} \implies S \sim 10^{77}$$

 \longrightarrow What are these microstates?

[Boltzmann, 1877]

Boltzmann: $S = \ln N$ Shannon: $S = \sum_{i} p_i \log_2 p_i$

$$M = m_{\odot} \implies S \sim 10^{77}$$

 \longrightarrow What are these microstates?

ways matter can collaps to form Kerr-Newmann with *M*, *Q* and *J*?
 → agreement in string theory for *D* = 5 extremal black holes

[Strominger & Vafa, 1996]

[Boltzmann, 1877]

Boltzmann: $S = \ln N$ Shannon: $S = \sum_{i} p_i \log_2 p_i$

$$M = m_{\odot} \implies S \sim 10^{77}$$

 \longrightarrow What are these microstates?

ways matter can collaps to form Kerr-Newmann with *M*, *Q* and *J*?
 → agreement in string theory for *D* = 5 extremal black holes

[Strominger & Vafa, 1996]

[Boltzmann, 1877]

• Holographic Principle? $S \sim A \sim R^2$, $S \nsim V \sim R^3$ ['t Hooft, 1993]

Boltzmann: $S = \ln N$ Shannon: $S = \sum_{i} p_i \log_2 p_i$

$$M = m_{\odot} \implies S \sim 10^{77}$$

 \longrightarrow What are these microstates?

ways matter can collaps to form Kerr-Newmann with *M*, *Q* and *J*?
 → agreement in string theory for *D* = 5 extremal black holes

[Strominger & Vafa, 1996]

• Holographic Principle? $S \sim A \sim R^2$, $S \nsim V \sim R^3$

['t Hooft, 1993]

[Boltzmann, 1877]

Degrees of freedom of gravitational system in volume V is described by quantum field theory on boundary ∂V

 \rightarrow not just for black holes (AdS/CFT, cosmology, ...) • Entanglement entropy? State of Hawking pair:

$$|\psi_{\text{tot}}\rangle = \frac{1}{\sqrt{2}} \Big(|0_{\text{int}}\rangle \otimes |0_{\text{ext}}\rangle + |1_{\text{int}}\rangle \otimes |1_{\text{ext}}\rangle\Big)$$

Internal part inaccessable \longrightarrow description in terms of density matrix

$$\rho_{\text{ext}} = \sum_{\text{int}} \langle \psi_{\text{int}} | \left(|\psi_{\text{tot}} \rangle \langle \psi_{\text{tot}} | \right) | \psi_{\text{int}} \rangle$$

Entanglement entropy:

$$S = -\text{Tr}\left(\rho_{\text{ext}} \ln \rho_{\text{ext}}\right) = \ln 2$$

• Entanglement entropy? State of Hawking pair:

$$|\psi_{\text{tot}}\rangle = \frac{1}{\sqrt{2}} \Big(|0_{\text{int}}\rangle \otimes |0_{\text{ext}}\rangle + |1_{\text{int}}\rangle \otimes |1_{\text{ext}}\rangle\Big)$$

Internal part inaccessable \longrightarrow description in terms of density matrix

$$\rho_{\text{ext}} = \sum_{\text{int}} \langle \psi_{\text{int}} | \left(|\psi_{\text{tot}} \rangle \langle \psi_{\text{tot}} | \right) | \psi_{\text{int}} \rangle$$

Entanglement entropy:

$$S = -\mathrm{Tr}(\rho_{\mathrm{ext}} \ln \rho_{\mathrm{ext}}) = \ln 2$$

State of *N* Hawking pairs:

$$\begin{aligned} |\psi_{\text{tot}}\rangle &= \frac{1}{\sqrt{2}} \Big(|0_{\text{int 1}}\rangle \otimes |0_{\text{ext 1}}\rangle + |1_{\text{int 1}}\rangle \otimes |1_{\text{ext 1}}\rangle \Big) \\ &\otimes \dots \otimes \frac{1}{\sqrt{2}} \Big(|0_{\text{int N}}\rangle \otimes |0_{\text{ext N}}\rangle + |1_{\text{int N}}\rangle \otimes |1_{\text{ext N}}\rangle \Big) \\ S &= N \ln 2 \end{aligned}$$

Information paradox

Where goes information about collapsing matter?

• Classically: inside de black hole, unaccessable...

Information paradox

Where goes information about collapsing matter?

- Classically: inside de black hole, unaccessable...
- Quantum mechanically: black hole evaporation → dispersion problem In-state = (sum of) pure states; Out-state = thermal state → Violates unitarity of Quantum Mechanics!

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a quantum-gravitational system?

- Are the basic principles of QM (linearity, unitarity, ...) valid to describe a quantum-gravitational system?
- Is Hawking radiation really thermal, or only in semi-classical approximation? Does it contain information in subtil correlations?

- Are the basic principles of QM (linearity, unitarity, ...) valid to describe a quantum-gravitational system?
- Is Hawking radiation really thermal, or only in semi-classical approximation? Does it contain information in subtil correlations?
- What is the end-point of Hawking radiation? A remnant? A naked singularity?

- Are the basic principles of QM (linearity, unitarity, ...) valid to describe a quantum-gravitational system?
- Is Hawking radiation really thermal, or only in semi-classical approximation? Does it contain information in subtil correlations?
- What is the end-point of Hawking radiation? A remnant? A naked singularity?
- Do black holes really exist, or are they a (semi-)classical approximation of states in quantum gravity? Black hole complementarity? Firewalls? Fuzzballs?

- Are the basic principles of QM (linearity, unitarity, ...) valid to describe a quantum-gravitational system?
- Is Hawking radiation really thermal, or only in semi-classical approximation? Does it contain information in subtil correlations?
- What is the end-point of Hawking radiation? A remnant? A naked singularity?
- Do black holes really exist, or are they a (semi-)classical approximation of states in quantum gravity? Black hole complementarity? Firewalls? Fuzzballs?

Problem:

Incompatibility between Equivalence Principle, unitarity or locality?

 \longrightarrow which one shall we sacrifice?

Conclusions:

• General relativity is coarse-grained, (semi-)classical description of an underlying quantum system!

 \longrightarrow Not just black holes: same in cosmic horizons, Rindler horizons,...

Conclusions:

- General relativity is coarse-grained, (semi-)classical description of an underlying quantum system!
 - \longrightarrow Not just black holes: same in cosmic horizons, Rindler horizons,...
- Holographic Principle: information storage is proportional to *A*, not *V*

Conclusions:

- General relativity is coarse-grained, (semi-)classical description of an underlying quantum system!
 - \longrightarrow Not just black holes: same in cosmic horizons, Rindler horizons,...
- Holographic Principle: information storage is proportional to *A*, not *V*

• Ultimate Question: What are degrees of freedom of quantum gravity?

Thank you!

- r > 2M: *t* is timelike, *r* is spacelike: asymptotically flat region
- r < 2M: *t* is spacelike, *r* is timelike: non-static region $\longrightarrow r = 0$ is spacelike singularity in future

- $R_+ < r$: *t* is timelike, *r* is spacelike: asymptotically flat region
- $R_{-} < r < R_{+}$: *t* is spacelike, *r* is timelike: non-stationary region
- $r < R_-$: *t* is timelike, *r* is spacelike: inner region \longrightarrow ring singularity is timelike and localised

Analogue for Schwarzschild black hole:

Energy at infinity of particle at position *r*:

$$E(r) = g_{t\mu} p^{\mu} = m_0 \sqrt{1 - \frac{2M}{r}}$$
$$\longrightarrow E = m_0 \quad \text{at} \quad r = \infty$$
$$E = 0 \quad \text{at} \quad r = 2M$$

Analogue for Schwarzschild black hole:

Energy at infinity of particle at position *r*:

 \rightarrow Possible to extract all energy of infalling particle and convert to work

 $\implies \Delta M = 0$

 \rightarrow No energy extracted from black hole, but no energy added either

Analogue for charged black holes:

Canonical momentum of charged particle: $p^{\mu} = m_0 \dot{x}^{\mu} + q A^{\mu}$ $\longrightarrow E < 0$ if A^{μ} sufficiently negative

 \longrightarrow Possible to extract energy from black hole and convert to work

$$\Delta E = E(\infty) - E(R_{+})$$

= $m_0 - \frac{qQ}{R_{+}}$ (Reissner-Nordström)

→ Extra work done by electromagnetic field of black hole... ... untill black hole is neutralised
Euclidean Path Integral

QFT in euclidean space: periodic time $t = t + \beta$ finite temperature $T = 1/\beta$

Path integral:

$$Z(\beta) = \int \mathcal{D}\phi \ e^{-S_E[\phi]}$$

Euclidean Path Integral

QFT in euclidean space: periodic time $t = t + \beta$ finite temperature $T = 1/\beta$

Path integral:

$$Z(\beta) = \int \mathcal{D}\phi \ e^{-S_E[\phi]}$$

Being (very) bold:

$$Z(\beta) = \int \mathcal{D}g \ e^{-S_E[g]}$$

 \longrightarrow Saddle point approximation, background subtraction, ...

Euclidean Path Integral

QFT in euclidean space: periodic time $t = t + \beta$ finite temperature $T = 1/\beta$

Path integral:

$$Z(\beta) = \int \mathcal{D}\phi \ e^{-S_E[\phi]}$$

Being (very) bold:

$$Z(\beta) = \int \mathcal{D}g \ e^{-S_E[g]}$$

 \rightarrow Saddle point approximation, background subtraction, ... $Z(\beta) \sim \text{Tr } e^{-\beta H}$

 \longrightarrow Interpret as opartition function in canonical ensemble:

$$E = M \qquad S = \frac{A}{4G_N\hbar} \qquad T = \frac{\hbar \kappa_H}{2\pi k_B}$$

 \rightarrow Assuming thermodynamic description of some microscopic system: Same results as geometrical approach!

Granada, January 16th, 2015