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Outlook

1. General Relativity: a quick review

2. The Schwarzschild black hole

3. The Kerr black hole

4. Penrose Process

5. The area theorem

6. The laws of black hole mechanics

7. Quantum black holes:

−→ Counting of microstates

−→ Information paradox

Disclaimer:
Main goal of this talk is to expose open issues ,

not to propose concrete solutions...
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1. General Relativity: a quick review

Gravity = manifestation of curved spacetime

John A. Wheeler: Matter says space how to curve

Space says matter how to move
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1. General Relativity: a quick review

Gravity = manifestation of curved spacetime

John A. Wheeler: Matter says space how to curve

Space says matter how to move

• Spacetime = 4-dim Lorentzian manifold, equiped with metric gµν and

Levi-Civita connection Γρ
µν .

gµν =⇒ Γρ
µν =⇒ Rµνρ

λ
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• Equivalence Principle: Weight can be locally gauged away

Inhomogeneities of gravitational field are shown in tidal effects

weight ∼ Γρ
µν , tidal forces ∼ Rµνρ

λ
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• Equivalence Principle: Weight can be locally gauged away

Inhomogeneities of gravitational field are shown in tidal effects

weight ∼ Γρ
µν , tidal forces ∼ Rµνρ

λ

• Einstein equations: relation between curvature and matter content

Rµν − 1
2
gµν R = −κ

[

FµρFν
ρ − 1

4
gµνFρλF

ρλ
]

− κm

4π
uµuνδ(x− x(τ))

∇µF
µν = qẋν δ(x− x(τ))

m
(

ẍρ + Γρ
µν ẋ

µẋν
)

= q ẋµF
µρ

−→ system of 10 +N non-linear coupled 2nd order partial diff eqns

for gµν(x) and Aµ(x) and xµ(τ)

−→ in general extremely difficult to solve!
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2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution [Schwarzschild, 1916]

ds2 =
(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2)

• (External region of) spherically symmetric object with mass m =M/G

In GR, mass is only asymptotically defined: gtt ≈ 1 +Gmr−1 + ...

• Singular for r = 0 and r = 2M :
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dr2 − r2(dθ2 + sin2 θdϕ2)

• (External region of) spherically symmetric object with mass m =M/G

In GR, mass is only asymptotically defined: gtt ≈ 1 +Gmr−1 + ...

• Singular for r = 0 and r = 2M :

Curvature invariante RµνρλR
µνρλ = 48G2m2 r−6

−→ r = 0 is a physical singularity

is point of infinite tidal forces
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2. The Schwarzschild black hole

Metric of static spherically symmetric vacuum solution [Schwarzschild, 1916]

ds2 =
(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2)

• (External region of) spherically symmetric object with mass m =M/G

In GR, mass is only asymptotically defined: gtt ≈ 1 +Gmr−1 + ...

• Singular for r = 0 and r = 2M :

Curvature invariante RµνρλR
µνρλ = 48G2m2 r−6

−→ r = 0 is a physical singularity

is point of infinite tidal forces

−→ r = 2M is a coordinate singularity

−→ Schwarzschild radius

• Eddington-Finkelstein coordinates: t̃ = t + 2M log(r − 2M)

ds2 =
(

1− 2M

r

)

dt̃2 − 4M

r
dt̃dr −

(

1 +
2M

r

)

dr2 − r2dΩ2
2
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r

t

RS0

−→ Lightcones incline towards singularity

−→ r = 2M : surface of infinite redshift

−→ r = 2M point of no return: light and matter end inevitably in singularity
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r

t

RS0

−→ Lightcones incline towards singularity

−→ r = 2M : surface of infinite redshift

−→ r = 2M point of no return: light and matter end inevitably in singularity

−→ No causal influences can travel from r < 2M to r > 2M [Finkelstein, 1958]

−→ r = 2M is an event horizon: one-dimensional causal membrane
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3. The Kerr solution

Metric of stationary axially symmetric vacuum solution [Kerr, 1963]

ds2 =
r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θ
dt2 +

4Mar sin2 θ

r2 + a2 cos2 θ
dtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2

− (r2 + a2 cos2 θ) dθ2 −
[

r2 + a2 +
2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Rotating, axially symmetric object with mass m =M/G and angular

momentum J = a/M

• Unique solution with these characteristics!
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3. The Kerr solution

Metric of stationary axially symmetric vacuum solution [Kerr, 1963]

ds2 =
r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θ
dt2 +

4Mar sin2 θ

r2 + a2 cos2 θ
dtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2

− (r2 + a2 cos2 θ) dθ2 −
[

r2 + a2 +
2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Rotating, axially symmetric object with mass m =M/G and angular

momentum J = a/M

• Unique solution with these characteristics!

Kerr-Newmann (idem with charge Q) is unique solution of stationary black

hole! −→ Uniqueness theorems [Israel; Hawking; Carter; 1965-1975]

• stationary =⇒ axially symmetric =⇒ Kerr-Newmann

• static =⇒ spherically symmetric =⇒ Reissner-Nordström

Black hole have no hair: completely determined by M , Q and J !
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ds2 =
r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θ
dt2 +

4Mar sin2 θ

r2 + a2 cos2 θ
dtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2

− (r2 + a2 cos2 θ) dθ2 −
[

r2 + a2 +
2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Physical singularity at r = a and θ = 0 −→ ring singularity!
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ds2 =
r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θ
dt2 +

4Mar sin2 θ

r2 + a2 cos2 θ
dtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2

− (r2 + a2 cos2 θ) dθ2 −
[

r2 + a2 +
2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Physical singularity at r = a and θ = 0 −→ ring singularity!

• grr = 0: Inner and outer horizon at r =M ±
√
M2 − a2 ≡ R±

−→ limit of static region

t

rR+R_
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ds2 =
r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θ
dt2 +

4Mar sin2 θ

r2 + a2 cos2 θ
dtdϕ − r2 + a2 cos2 θ

r2 − 2Mr + a2
dr2

− (r2 + a2 cos2 θ) dθ2 −
[

r2 + a2 +
2Ma2r sin2 θ

r2 + a2 cos2 θ

]

sin2 θ dϕ2

• Physical singularity at r = a and θ = 0 −→ ring singularity!

• grr = 0: Inner and outer horizon at r =M ±
√
M2 − a2 ≡ R±

−→ limit of static region

• gtt = 0: Surfaces of infinite redshift at r =M ±
√
M2 − a2 cos2 θ ≡ S±

−→ limit of stationary region

−→ Effects of frame dragging

y

x

S+

+
R−

R

S−

I

II
III

z
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Frame dragging: [Lense & Thirring, 1918]

General axially symmetric stationary metric:

ds2 = gtt dt
2 + 2gtϕ dtdϕ + grr dr

2 + gθθ dθ
2 + gϕϕ dϕ

2

Stationary observer: rotation with constant velocity in equatorial plane
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Frame dragging: [Lense & Thirring, 1918]

General axially symmetric stationary metric:

ds2 = gtt dt
2 + 2gtϕ dtdϕ + grr dr

2 + gθθ dθ
2 + gϕϕ dϕ

2

Stationary observer: rotation with constant velocity in equatorial plane

−→ Angular velocity: Ω = dϕ

dt
= ϕ̇

ṫ

−→ Angular momentum: L = −gϕµpµ = −m0 (gtϕ ṫ + gϕϕ ϕ̇)
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Frame dragging: [Lense & Thirring, 1918]

General axially symmetric stationary metric:

ds2 = gtt dt
2 + 2gtϕ dtdϕ + grr dr

2 + gθθ dθ
2 + gϕϕ dϕ

2

Stationary observer: rotation with constant velocity in equatorial plane

−→ Angular velocity: Ω = dϕ

dt
= ϕ̇

ṫ

−→ Angular momentum: L = −gϕµpµ = −m0 (gtϕ ṫ + gϕϕ ϕ̇)

Zero angular momentum observer: dragged along with rotation

L = 0 =⇒ Ω0 = − gtϕ
gϕϕ

6= 0

Lense-Thirring effect for Earth:

Prediccion: −39, 2 mili-arcsec/year

GPB: −37, 2 ± 7, 2 mili-arcsec/year

[Gravity Probe B, 2011]
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Ergoregion: Frame dragging limits velocities of stationary observers

Ω± = − gtϕ
gϕϕ

±

√

(

gtϕ
gϕϕ

)2

− gtt
gϕϕ

= 2Ma
r3+a2r+2Ma2

±
√

4M2a2

(r3+a2r+2Ma2)2
+ r−2M

r3+a2r+2Ma2
(Kerr)

1

1/2

−1

r

+

v0

v

v_

R+ S+

III II I

• Region I (gtt > 0 ): both co-rotation and counter-rotation possible

• Region II (gtt < 0, grr > 0): only co-rotation possible

• Region III (grr < 0 ): no stable rotation

B. Janssen (UGR) Granada, January 16th, 2015 12/28



Equatorial plane:

... . ..

singularidad

ergosfera

horizonte

.
III III

Ergoregion is not trapped surface!

• Region I: static observers; escape to infinity

• Region II: stationary non-static observers; escape to infinity

• Region III: non-stationary, trapped observers
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4. The Penrose process

Energy at infinity (seen by asymptotic observer)

E = tµ p
µ = gtµ p

µ = gtt p
t + gtϕ p

ϕ
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4. The Penrose process

Energy at infinity (seen by asymptotic observer)

E = tµ p
µ = gtµ p

µ = gtt p
t + gtϕ p

ϕ

In ergoregion: gtt < 0:

E < 0 ⇐⇒ pϕ < − gtt
gtϕ

pt

−→ opposing frame dragging as much as possible

1

1/2

−1

rS++R

v+

v
*

v_

NB: E < 0 only for asymptotic observer. Local observer sees E > 0!
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Penrose process: extracting energy from black hole! [Penrose, 1969]

Energy and angular momentum conservation: A −→ B + C

EA = EB + EC , LA = LB + LB
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Penrose process: extracting energy from black hole! [Penrose, 1969]

Energy and angular momentum conservation: A −→ B + C

EA = EB + EC , LA = LB + LB

Launch particle such that EB < 0:

∆M = EB = EA − EC < 0 ∆J = LB = LA − LC < 0

A

B

C

E

E

ergosfera

horizonte

E • EC > EA:

Black hole delivers work on

particle!

• ∆M < 0, ∆J < 0:

Black hole loses mass and

angular momentum!

−→ black holes are not just the

sinks of the universe!
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Misner, Thorme & Wheeler: Advanced society’s recycling scheme
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Misner, Thorme & Wheeler: Advanced society’s recycling scheme

−→ CT12: Sensibilidad hacia temas medioambientales
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5. The area theorem

The area A of the horizon of a black hole never decreases in a physical

process, not even in a Penrose process [Hawking, 1971]

A = 4π
[

2M2 + 2M
√
M2 − a2

]

(Kerr)
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5. The area theorem

The area A of the horizon of a black hole never decreases in a physical

process, not even in a Penrose process [Hawking, 1971]

A = 4π
[

2M2 + 2M
√
M2 − a2

]

(Kerr)

The irreducible mass M∗ of a black hole never decreases in a physical proces,

not even in a Penrose process [Christodoulou & Ruffini, 1971]

M2 = M2
∗ +

J2

4M2
∗

(Kerr)

with
M2

∗ = 1
4

[

2M2 + 2M
√
M2 − a2

]

(Kerr)
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5. The area theorem

The area A of the horizon of a black hole never decreases in a physical

process, not even in a Penrose process [Hawking, 1971]

A = 4π
[

2M2 + 2M
√
M2 − a2

]

(Kerr)

The irreducible mass M∗ of a black hole never decreases in a physical proces,

not even in a Penrose process [Christodoulou & Ruffini, 1971]

M2 = M2
∗ +

J2

4M2
∗

(Kerr)

with
M2

∗ = 1
4

[

2M2 + 2M
√
M2 − a2

]

(Kerr)

In Penrose process: ∆M ≤ ΩH∆J

• non-optimal process: ∆M < ΩH∆J =⇒ ∆M∗ > 0 (irreversable)

• optimal process: ∆M = ΩH∆J =⇒ ∆M∗ = 0 (reversable)
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So far...

• No-hair theorems: unique 3-parameter family of stationary black hole

solutions, completely characterised by M , Q and J

• Penrose process: possible to extract (certain amount of) work from black

holes ∆M ≤ ΩH∆J

• Area theorem: area A = 16πM2
∗ never descreases in physical processes,

and only constant in reversable processes.
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So far...

• No-hair theorems: unique 3-parameter family of stationary black hole

solutions, completely characterised by M , Q and J

• Penrose process: possible to extract (certain amount of) work from black

holes ∆M ≤ ΩH∆J

• Area theorem: area A = 16πM2
∗ never descreases in physical processes,

and only constant in reversable processes.

−→ smells like mechanical system!

−→ A = 16πM 2

∗ smells like entropy...
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So far...

• No-hair theorems: unique 3-parameter family of stationary black hole

solutions, completely characterised by M , Q and J

• Penrose process: possible to extract (certain amount of) work from black

holes ∆M ≤ ΩH∆J

• Area theorem: area A = 16πM2
∗ never descreases in physical processes,

and only constant in reversable processes.

−→ smells like mechanical system!

−→ A = 16πM 2

∗ smells like entropy...

−→ The analogy goes even further...
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6. The laws of black hole mechanics [Bardeen, Carter, Hawking; 1973]

• Zeroth law: In stationary black holes, the surface gravity κH is constant

along the horizon.

NB: Surface gravity κH = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon
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6. The laws of black hole mechanics [Bardeen, Carter, Hawking; 1973]

• Zeroth law: In stationary black holes, the surface gravity κH is constant

along the horizon.

NB: Surface gravity κH = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• First law: In quasi-stationary processes, M , A, J and Q vary like

dM =
κH

8πGN

dA + ΩH dJ + ΦHdQ
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• First law: In quasi-stationary processes, M , A, J and Q vary like
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8πGN
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physical processes.
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6. The laws of black hole mechanics [Bardeen, Carter, Hawking; 1973]

• Zeroth law: In stationary black holes, the surface gravity κH is constant

along the horizon.

NB: Surface gravity κH = acceleration of mass on horizon, measured by

asymptotic observer

= force aplied by asymptotic observer to

maintain a mass stationary on horizon

• First law: In quasi-stationary processes, M , A, J and Q vary like

dM =
κH

8πGN

dA + ΩH dJ + ΦHdQ

• Second law: The area A of the black hole horizon never descreases in

physical processes.

• Third law: It is not possible to reduce the surface gravity κH to zero by

physical processes in a finite time.
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Compare with laws of thermodynamics: [Clausius; Kelvin; Gibbs; Nernst]

• Zeroth law: In systems in thermodynamic equilibrium, the temperature

T is constant throughout the system.

• First law: In quasi-stationary processes, E, S, V and N vary like

dE = kBT dS − P dV + µ dN,

• Second law: The entropy of a closed system never descreases in physical

processes.

• Third law: It is not possible to reduce the temperature T to zero by

physical processes in a finite time.
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Compare with laws of thermodynamics: [Clausius; Kelvin; Gibbs; Nernst]

• Zeroth law: In systems in thermodynamic equilibrium, the temperature

T is constant throughout the system.

• First law: In quasi-stationary processes, E, S, V and N vary like

dE = kBT dS − P dV + µ dN,

• Second law: The entropy of a closed system never descreases in physical

processes.

• Third law: It is not possible to reduce the temperature T to zero by

physical processes in a finite time.

Suggests:

M ∼ E relativistic mass en energy

ΩHdJ ∼ −PdV work done by system

A ∼ S ↔ uniqueness theorems: S = 0

κH ∼ T ↔ black hole emits nothing: T = 0
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7. Quantum black holes

Bardeen, Carter, Hawking: Pure analogy, no physical connection
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7. Quantum black holes

Bardeen, Carter, Hawking: Pure analogy, no physical connection

Bekenstein: Deep relation between black holes and thermodynamics!

S>0

S = 0
S < 0?D

Black holes must have non-trivial

entropy, in order to satisfy Second

Law of Thermodynamics

−→ Entropy is real and huge! S ∼ A/ℓ2P [Bekenstein, 1973]

−→ Black hole = maximal entropy object: S ≤ 2π
~
kBER0
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7. Quantum black holes

Bardeen, Carter, Hawking: Pure analogy, no physical connection

Bekenstein: Deep relation between black holes and thermodynamics!

S>0

S = 0
S < 0?D

Black holes must have non-trivial

entropy, in order to satisfy Second

Law of Thermodynamics

−→ Entropy is real and huge! S ∼ A/ℓ2P [Bekenstein, 1973]

−→ Black hole = maximal entropy object: S ≤ 2π
~
kBER0

Question: How can black holes have temperature,
if they do not emit anything?

−→ Look at quantum character...
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Hawking radiation [Hawking, 1974]

QFT in curved spacetime: black hole behaves like black body

t

R

r

+

Schwinger pair creation near horizon

=⇒ thermal radiation with

T =
~κH
2πkB

=⇒ identify entropy as

S =
A

4GN~
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Hawking radiation [Hawking, 1974]

QFT in curved spacetime: black hole behaves like black body

t

R

r

+

Schwinger pair creation near horizon

=⇒ thermal radiation with

T =
~κH
2πkB

=⇒ identify entropy as

S =
A

4GN~

Two big problems:

• Counting of microstates: what is nature of entropy?

• Information paradox: is time evolution unitary?
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Counting of microstates

Boltzmann: S = lnN [Boltzmann, 1877]

Shannon: S =
∑

i pi log2 pi

M = m⊙ =⇒ S ∼ 1077

−→ What are these microstates?
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Counting of microstates

Boltzmann: S = lnN [Boltzmann, 1877]

Shannon: S =
∑

i pi log2 pi

M = m⊙ =⇒ S ∼ 1077

−→ What are these microstates?

• # ways matter can collaps to form Kerr-Newmann with M , Q and J?

−→ agreement in string theory for D = 5 extremal black holes

gsgkaoo [Strominger & Vafa, 1996]
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Counting of microstates

Boltzmann: S = lnN [Boltzmann, 1877]

Shannon: S =
∑

i pi log2 pi

M = m⊙ =⇒ S ∼ 1077

−→ What are these microstates?

• # ways matter can collaps to form Kerr-Newmann with M , Q and J?

−→ agreement in string theory for D = 5 extremal black holes

gsgkaoo [Strominger & Vafa, 1996]

• Holographic Principle? S ∼ A ∼ R2, S ≁ V ∼ R3
[’t Hooft, 1993]

Degrees of freedom of gravitational system in

volume V is described by quantum field theory

on boundary ∂V

−→ not just for black holes

(AdS/CFT, cosmology, ...)
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• Entanglement entropy?

State of Hawking pair:

|ψtot〉 = 1√
2

(

|0int〉 ⊗ |0ext〉 + |1int〉 ⊗ |1ext〉
)

Internal part inaccessable −→ description in terms of density matrix

ρext =
∑

int

〈ψint|
(

|ψtot〉〈ψtot|
)

|ψint〉

Entanglement entropy:

S = −Tr
(

ρext ln ρext

)

= ln 2

B. Janssen (UGR) Granada, January 16th, 2015 24/28



• Entanglement entropy?

State of Hawking pair:

|ψtot〉 = 1√
2

(

|0int〉 ⊗ |0ext〉 + |1int〉 ⊗ |1ext〉
)

Internal part inaccessable −→ description in terms of density matrix

ρext =
∑

int

〈ψint|
(

|ψtot〉〈ψtot|
)

|ψint〉

Entanglement entropy:

S = −Tr
(

ρext ln ρext

)

= ln 2

State of N Hawking pairs:

|ψtot〉 = 1√
2

(

|0int 1〉 ⊗ |0ext 1〉 + |1int 1〉 ⊗ |1ext 1〉
)

⊗ ... ⊗ 1√
2

(

|0int N〉 ⊗ |0ext N〉 + |1int N〉 ⊗ |1ext N〉
)

S = N ln 2
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Information paradox

Where goes information about collapsing matter?

• Classically: inside de black hole, unaccessable...
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Information paradox

Where goes information about collapsing matter?

• Classically: inside de black hole, unaccessable...

• Quantum mechanically: black hole evaporation −→ dispersion problem

In-state = (sum of) pure states; Out-state = thermal state

−→ Violates unitarity of Quantum Mechanics!
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Open Questions...

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a

quantum-gravitational system?
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Open Questions...

• Are the basic principles of QM (linearity, unitarity, ...) valid to describe a

quantum-gravitational system?

• Is Hawking radiation really thermal, or only in semi-classical

approximation? Does it contain information in subtil correlations?

• What is the end-point of Hawking radiation? A remnant? A naked

singularity?

• Do black holes really exist, or are they a (semi-)classical approximation of

states in quantum gravity? Black hole complementarity? Firewalls?

Fuzzballs?

Problem:
Incompatibility between Equivalence Principle, unitarity or locality?

−→ which one shall we sacrifice?
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Conclusions:

• General relativity is coarse-grained, (semi-)classical description of an

underlying quantum system!

−→ Not just black holes: same in cosmic horizons, Rindler horizons,...
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Conclusions:

• General relativity is coarse-grained, (semi-)classical description of an

underlying quantum system!

−→ Not just black holes: same in cosmic horizons, Rindler horizons,...

• Holographic Principle: information storage is proportional to A, not V

• Ultimate Question: What are degrees of freedom of quantum gravity?
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Thank you!
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gtt = 1− 2M
r

changes sign at r = 2M : t and r interchange roles

t

r

2M

D
is

ta
nc

ia

Tiempo

T
ie

m
po

Distancia

• r > 2M : t is timelike, r is spacelike: asymptotically flat region

• r < 2M : t is spacelike, r is timelike: non-static region

−→ r = 0 is spacelike singularity in future
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t

rR+R_

• R+ < r: t is timelike, r is spacelike: asymptotically flat region

• R− < r < R+: t is spacelike, r is timelike: non-stationary region

• r < R−: t is timelike, r is spacelike: inner region

−→ ring singularity is timelike and localised
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Analogue for Schwarzschild black hole:

Energy at infinity of particle at position r:

E(r) = gtµ p
µ = m0

√

1− 2M

r

−→ E = m0 at r = ∞
−→ E = 0 at r = 2M
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Analogue for Schwarzschild black hole:

Energy at infinity of particle at position r:

E(r) = gtµ p
µ = m0

√

1− 2M

r

−→ E = m0 at r = ∞
−→ E = 0 at r = 2M

m
0

W = m0

−→ Possible to extract all energy of infalling particle and convert to work

=⇒ ∆M = 0

−→ No energy extracted from black hole, but no energy added either
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Analogue for charged black holes:

Canonical momentum of charged particle: pµ = m0 ẋ
µ + qAµ

−→ E < 0 if Aµ sufficiently negative

+Q

W > m 0
q

−→ Possible to extract energy from black hole and convert to work

∆E = E(∞) − E(R+)

= m0 − qQ

R+

(Reissner-Nordström)

−→ Extra work done by electromagnetic field of black hole...

... untill black hole is neutralised
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Euclidean Path Integral [Gibbons, Hawking, 1977]

QFT in euclidean space: periodic time t = t+ β

finite temperature T = 1/β

Path integral:

Z(β) =

∫

Dφ e−SE [φ]
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Euclidean Path Integral [Gibbons, Hawking, 1977]

QFT in euclidean space: periodic time t = t+ β

finite temperature T = 1/β

Path integral:

Z(β) =

∫

Dφ e−SE [φ]

Being (very) bold:

Z(β) =

∫

Dg e−SE [g]

−→ Saddle point approximation, background subtraction, ...
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Euclidean Path Integral [Gibbons, Hawking, 1977]

QFT in euclidean space: periodic time t = t+ β

finite temperature T = 1/β

Path integral:

Z(β) =

∫

Dφ e−SE [φ]

Being (very) bold:

Z(β) =

∫

Dg e−SE [g]

−→ Saddle point approximation, background subtraction, ...

Z(β) ∼ Tr e−βH

−→ Interpret as opartition function in canonical ensemble:

E = M S =
A

4GN~
T =

~κH
2πkB

−→ Assuming thermodynamic description of some microscopic system:

Same results as geometrical approach!
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