DISEÑO TANQUES DE ALMACENAMIENTO

1. PROCEDIMIENTO DE CÁLCULO

Los tanques de almacenamiento de materias primas y productos de la planta se diseñan según el código API-ASME, para el diseño de tanques que trabajan a presión atmosférica y contienen productos (líquidos o sólidos) en su interior.

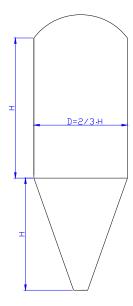
1.1 Geometría de los recipientes

¬ Recipientes para sólidos:

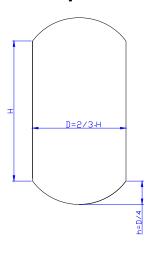
Cabeza: elipsoidal 2:1

Fondo: cónico

Carcasa: cilíndrica


- Recipientes para líquidos:

Cabeza y Fondo: elipsoidal 2:1


Carcasa: cilíndrica

Las dimensiones para cada una de las partes vendrán determinadas en función de la altura de la carcasa cilíndrica H son las siguientes proporciones:

Tarque confordo cónico para sólidos

Tanque para líquidos

1.2 Volumen de los recipientes

$$V_{cilindro} = \pi \cdot R^2 \cdot H$$

$$V_{cono} = \frac{1}{3} \cdot \pi \cdot R^2 \cdot h_{cono}$$

$$V_{cabeza} = (\pi \cdot D^2 \cdot h_{cab})/6$$

 $V_{Tanque\ S\'olidos} = V_{cilindro} + V_{cono} + V_{cabeza}$

V_{Tanque Líquidos} = V_{cono} + 2·V_{cabeza}

Se ha de tener en cuenta que los recipientes por seguridad estarán llenos como máximo al 80 %, por lo que habrá que tenerlo en cuenta a la hora de establecer sus dimensiones.

En función del volumen necesario de almacenamiento se establece el valor de H, y en función de éste el resto de dimensiones del tanque.

1.3 Altura del tanque

La altura del tanque será la suma de las longitudes de las tres partes que lo forman, caracasa, cabeza y fondo.

Recipientes para sólidos:

Ht= H+
$$h_{cono}$$
 + h_{cab}

Recipientes para líquidos:

1.4 Presión de proyecto

La presión de proyecto para el diseño de los recipientes debe ser mayor que la máxima de:

P > 1.1·Presión máxima de operación

P > Presión máxima de operación + 1 kg/cm²

1.5 Espesor de los recipientes

El espesor (t) de cada una de las partes de los recipientes viene dado por las siguientes expresiones:

$$\begin{split} &t_{cilindro} = (\gamma \cdot d \cdot r) \ / \ \sigma_t \cdot E_s \\ &t_{cono} = (\gamma \cdot d^2 \cdot tg\alpha) \ / \ 4 \cdot \sigma_t \cdot E_s \cdot cos\alpha \\ &t_{cabeza} = (P \cdot D_e) \ / \ 2 \cdot \sigma_t \cdot E_s + 1.8 \cdot P \end{split}$$

donde:

 γ = peso específico del producto almacenado, kg/cm³.

d = nivel máximo de producto almacenado, cm.

r = radio del cilindro, cono y cabeza elipsoidal, cm.

 σ_t = tensión máxima admisible del material, kg/cm².

 E_s = eficiencia de soldadura según tipo de soldadura. Para junta soldada a tope en doble V y no examinada, toma valor de 0.6.

P = presión externa, kg/cm^2 .

D_e = Diámetro externo, cm.

α = semiángulo de la abertura del cono, º.

Habrá que tener en cuenta la corrosión debido al producto almacenado y a los agentes externos, por lo que el espesor final será:

$$t_{fcilindro} = t_{cilindro} + t_{corrosión}$$
, mm
 $t_{fcono} = t_{cono} + t_{corrosión}$, mm
 $t_{fcabeza} = t_{cabeza} + t_{corrosión}$, mm

El espesor de corrosión será función del material elegido para la construcción, y las condiciones de operación del tanque.

1.6 Material de construcción

Se escoge un material de construcción para el tanque de acuerdo con las necesidades de almacenamiento del producto y con tensión admisible (σ_a) suficiente para la construcción del mismo.

Para el cálculo de los espesores de almacenamiento, es necesario utilizar la tensión máxima admisible del material, σ_t , que es el resultado de dividir la tensión admisible del material por el coeficiente de seguridad aplicado en cada caso.

$$\sigma_t = \sigma_a/n$$

donde:

n = coeficiente de seguridad.

1.7 Temperatura de proyecto

La temperatura de proyecto será:

$$T_{proyecto} = T_{trabajo} + T_{ambiente}$$

1.8 Prueba hidráulica

Antes de su puesta en operación, todos los recipientes deben ser comprobados sometiéndolos a una prueba hidráulica a una presión mayor que la de proyecto.

La presión de prueba hidráulica será

$$P_{hidraúlica} = 1.5 \cdot P \cdot \sigma_t / \sigma_{amb}$$

donde:

P = presión del proyecto.

 σ_t = tensión máxima admisible a temperatura de proyecto.

 σ_{amb} = tensión máxima admisible a temperatura ambiente.

El recipiente debe soportar la presión hidráulica y se ha de verificar que la tensión máxima desarrollada en las paredes < 90 % del límite elástico del material.