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Neumann condition on each component of ∂A. As a consequence,we classify all themetrics
of constant curvature in A that have constant geodesic curvature on ∂A.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the following elliptic partial differential equation with Neumann boundary conditions:
1u + 2Keu = 0, in A = {z ∈ C : e−rπ < |z| < 1},
∂u
∂ν1

= c1e
u
2 + 2, on C1 = {z ∈ C : |z| = 1},

∂u
∂ν2

= c2e
u
2 − 2erπ , on C2 = {z ∈ C : |z| = e−rπ

}.

(P)

Here, νi denotes the interior unit normal to Ci, i = 1, 2, respectively, and r > 0 is a constant. Moreover, we suppose up to
dilation that K = {−1, 0, 1}.

The solutions to (P) provide conformal metrics eu|dz|2 on A such that (A, eu|dz|2) has constant curvature K on A, and
constant geodesic curvature −ci/2 on Ci ⊂ ∂A for i = 1, 2. And conversely, if Σ is a compact surface diffeomorphic to
a closed annulus, and dσ 2 is a Riemannian surface of constant curvature K on Σ and constant geodesic curvature on each
boundary component of ∂Σ , then (Σ, dσ 2) is isometric to (A, eu|dz|2) for some solution u to (P) with adequate constants
c1, c2 and r .

The equation 1u + 2Keu = 0 is called the Liouville equation. An important property of the Liouville equation is that
it is conformally invariant. Actually, since different values of r provide annuli that are not conformally equivalent, we are
considering a family of problems that are also non-conformally equivalent.

The problem of finding what are the conformal Riemannian metrics on a domain Ω having constant curvature K and
constant geodesic curvature along each boundary component of ∂Ω has been widely studied when Ω = R2

+
. In the case

that the metric extends smoothly to the whole R, it was fully solved by Zhang [1] (in the finite-energy case) and by Gálvez
and Mira [2] (in general), as an extension of previous results in [3,4] (see also [5–7]). More recently this problem has been
generalized to the casewhen themetric has a singularity at the origin and possibly different values of the geodesic curvature
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on R− and R+. This is a work of Jost, Wang, and Zhou in [8] and Gálvez, Mira, and the current author in [9]. The case of the
metrics of constant curvature over non-simply connected domains is studied in the works of Chou andWan [6] (in the case
of a punctured disc) and Brito et al. [10] (in the general case). Finally, in [2], the authors use the results in R2

+
and a lifting to

the universal cover to give a complete classification of themetrics in the punctured unit discD∗ that have constant curvature
and constant geodesic curvature on the boundary.

Our goal in this paper is to classify all the solutions of (P) and deduce for what values of K , c1, and c2 such solutions do
exist. This classification is given as our main result in Theorem 1, which is stated and proved in Section 2. The consequences
concerning the possible values of the constants c1 and c2 and the existence result will be given in Lemma 2 and Corollary 1, in
Section 3. Finally,we recall that discs of constant curvaturewith constant geodesic curvature on the boundarywere classified
geometrically (see for example [7]). They are isometric to spherical caps, planar discs, or hyperbolic discs, respectively if
K = 1, 0,−1. In Section 4 we give the analogous result in the case of an annulus A with constant geodesic curvature on the
boundary. We show that all the solutions in Theorem 1 correspond to one of the canonical geometric situations described
in Section 4.

This article is part of the Ph.D. Thesis of the author, who would like to thank Professor H. Rosenberg for suggesting
this problem during the congress Algebraic, Geometric and Analytical Aspects of Surface Theory in Búzios, Brasil in 2010, and
Professors Gálvez and Mira for their helpful comments.

2. Analytic description of the solutions to (P)

Theorem 1. Any solution to (P) is given by one of the following expressions, where z = Rei arg z .

1.

eu =
4γ 2λ2R2(γ−1)

(Kλ2 + |Rγ eiγ arg z − z0|2)2
(1)

with γ > 0, λ > 0 and z0 ∈ C such that (i) if K = 0 and z0 ≠ 0 then |z0| ∉ [e−rγπ , 1] and γ ∈ N; (ii) if K = −1 and
z0 ≠ 0, then |z0| ∉ [e−rπγ

− λ, 1 + λ] and γ ∈ N, and (iii) if K = −1 and z0 = 0, then λ ∉ [e−rγπ , 1].
2. If K = 0,

eu = 4λ2R2(γ−1), (2)

for some λ > 0, γ ≥ 0.
3. If K = −1,

eu =
4

R2(λ+ 2 log R)2
, (3)

where λ ∉ [0, 2πr], or

eu =
γ 2

R2(cos(θ − γ log R))2
, (4)

where 0 < γ < 1/r and θ ∈ R is such that π/2 + kπ ∉ [θ, θ + γ rπ ] ∀k ∈ Z and cos(θ) > 0, or

eu =
4γ 2R2(γ−1)

(λ+ 2Rγ cos(θ + γ arg z))2
(5)

with γ ∈ N and λ ∉ [−2, 2].

In order to prove Theorem 1, we need to introduce some preliminaries. For that, we will identify from now on R2 and C,
and write w = s + it ≡ (s, t) or z = x + iy ≡ (x, y) for points in the domain of a solution to the Liouville equation. We
will also denote as Q(K) the two-dimensional space form of constant curvature K ∈ {−1, 0, 1}, which will be viewed as
(ΣK , ds2K ), where

ΣK =

C if K = 1,
C if K = 0,
D ⊂ C if K = −1,

and ds2K is the Riemannian metric onΣK given by

ds2K =
4|dζ |2

(1 + K |ζ |2)2
. (6)

The following classical result, mainly due to Liouville [11] (see also [12,6]), shows the relationship between the Liouville
equation and complex analysis.
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Theorem 2. Let u : Ω ⊂ R2
≡ C → R denote a solution to1u+ 2Keu = 0 in a simply connected domainΩ . Then there exists

a locally univalent meromorphic function g (holomorphic with 1 + K |g|2 > 0 if K ≤ 0) inΩ such that

u = log
4|g ′

|
2

(1 + K |g|2)2
. (7)

Conversely, if g is a locally univalent meromorphic function (holomorphic with 1 + K |g|2 > 0 if K ≤ 0) in Ω , then (7) is a
solution to1u + 2Keu = 0 inΩ .

Observe that the function g in the above theorem, which is called the developing map of the solution, is unique up to a
Möbius transformation of the form

g →
αg − β̄

εβg + ᾱ
, |α|

2
− ε|β|

2
= 1. (8)

These transformations are isometries of Q(ε).

Remark 1. From a geometric point of view, if u ∈ C2(Ω) is a solution to 1u + 2Keu = 0, then its developing map
g : Ω ⊆ C → ΣK ⊆ C provides a local isometry from (Ω, eu|dz|2) to Q(K) ≡ (ΣK , ds2K ), where ds2K is given by (6).

Although Theorem 2 is only valid for simply connected domains, we will be able to apply formula (7) by passing to the
universal cover of A, in order to obtain the solutions of (P). The way to do this will be shown in Lemma 1. The samemethod
is used for solving the Liouville equation in other non-simply connected domains (see [10,2]).

There is another holomorphic function attached to any solution u of the Liouville equation that will be important in our
study. We will denote it by Q , and it is given by the formulas below, where g is the developing map of u:

Q := uzz −
1
2
u2
z = {g, z} :=


gzz
gz


z
−

1
2


gzz
gz

2

. (9)

Here, by definition, uz = (ux − iuy)/2 (and gz = g ′), and {g, z} is the Schwarzian derivative of the meromorphic function
g with respect to z. Observe that Q is holomorphic, i.e. it does not have poles, and it does not depend on the choice of the
developing map g . We will call it the Schwarzian map associated to the solution u.

Lemma 1. Solving problem (P) is equivalent to obtaining the solutions of
1v + 2Kev = 0 in Γ = {w = s + it ∈ C : 0 < Imw < π},

∂v

∂t
= c1ev/2 on R,

∂v

∂t
= −c2ev/2 on R + π i,

(P̃)

that are (2π/r)-periodic. Specifically, the solutions of (P) are given by formula (7), where g = g̃ ◦Φ−1, withΦ : Γ → A given
byΦ(w) = eirw , and g̃ the developing map associated to (P̃).

Proof. It is clear that Φ defines a conformal diffeomorphism between A and the quotient Γ / ∼, where w ∼ w′
⇔ w′

=

w +
2π
r Z.

On the other hand, it is well known (see [10]) that, if Φ : Ω2 → Ω1 is a conformal map between two domains, the
solutions of the Liouville equation inΩ2 are given by

v = u ◦ Φ + 2 log |Φ ′
|, (10)

where u is a solution inΩ1. Moreover, the developing map associated to u can be written as g(z) = g̃(Φ−1(z)). In general,
ifΦ is a covering map, g is multivalued unlessΩ1 is simply connected.

Then, to prove the lemma, we only need to check that, if u is a solution of (P), then

v(s, t) = u(Φ(s, t))+ 2 log r − 2rt (11)

is a solution of (P̃)which is (2π/r)-periodic. Conversely, if v is a (2π/r)-periodic solution of (P̃), then

u(x, y) = v(Φ−1(x, y))− 2 log r − log(x2 + y2) (12)

is a solution of (P). But this a simple computation, taking into account the following facts.

(i) Formula (11) comes from (10), and (12) is just its inverse.
(ii) Φ is (2π/r)-periodic andΦ−1 is multivalued in the following way:Φ−1(x, y) = Φ−1(x, y)+ 2π/r .
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(iii) It holds that
∂u
∂ν1

= −xux − yuy on C1 and
∂u
∂ν2

= eπr(xux + yuy) on C2. �

Proof of Theorem 1. Let v ∈ C2(Γ ) be a (2π/r)-periodic solution of (P̃). Then, its associated Schwarzian derivative
Q̃ = vww −

1
2v

2
w will also be (2π/r)-periodic. Moreover, because of the boundary conditions in (P̃), we have that

Im Q̃ (s, 0) = −
1
2

 c1
2
vs(s, 0)ev(s,0)/2 −

c1
2
vs(s, 0)ev(s,0)/2


= 0,

Im Q̃ (s, π) = −
1
2


−

c2
2
vs(s, π)ev(s,π)/2 +

c2
2
vs(s, π)ev(s,π)/2


= 0.

(13)

So, by the Schwarz reflection principle for harmonic functions, we can extend Im Q̃ fromΓ toC as a (2π i)-periodic function.
As Im Q̃ is also (2π/r)-periodic, we deduce from (13) that Im Q̃ = 0.

Consequently, Q̃ = c = constant for a certain c ∈ R. It is well known that the solutions of the Schwarzian equation
{g̃, w} = c are of the form g̃(w) = ψ(w) if c = 0, or g̃(w) = ψ(e

√
−2cw) if c ≠ 0, where ψ is a Möbius transformation.

Thus, by Lemma 1, the developing map g : A −→ C associated to the solutions of (P) can be written as

g(z) =
Az−i

√
−2c
r + B

Cz−i
√

−2c
r + D

, if c ≠ 0, (14)

or

g(z) =
−Ai log z/r + B
−Ci log z/r + D

, if c = 0, (15)

for some A, B, C,D ∈ C with AD − BC = 1. Here, ψ(ξ) =
Aξ+B
Cξ+D .

We will denote γ =
√

−2c/r if c < 0, or iγ =
√

−2c/r if c > 0. So, from (14) and (15), we obtain the following
expressions.

If c > 0,

eu =
4γ 2

|zγ−1
|
2

(K |B|2 + |D|2 + (KAB + CD)zγ + (KAB + CD)z̄γ + (K |A|2 + |C |2)|z|2γ )2
; (16)

if c < 0,

eu =
4γ 2

|z−iγ−1
|
2

(K |B|2 + |D|2 + (KAB + CD)z−iγ + (KAB + CD)z̄ iγ + (K |A|2 + |C |2)|z−iγ |2)2
; (17)

and, if c = 0,

eu = 4/(r2|z|2(K |B|2 + |D|
2
− i(KAB + CD) log z/r + i(KAB + CD) log z̄/r

+ (K |A|
2
+ |C |

2)| log z|2/r2)2). (18)

We determine now which of them are valid solutions in terms of the constants A, B, C,D.
Assume first of all that K |A|

2
+ |C |

2
≠ 0. Then, we can take

λ =
1K |A|2 + |C |2

 , z0 = −
KAB + CD
K |A|2 + |C |2

, (19)

so (16)–(18) yield, respectively,

eu =
4γ 2λ2|zγ−1

|
2

(Kλ2 + |zγ − z0|2)2
, (20)

eu =
4γ 2λ2|z−iγ−1

|
2

(Kλ2 + |z−iγ − z0|2)2
, (21)

eu =
4λ2

r2|z|2

Kλ2 + | −

i
r log z − z0|2

2 . (22)

Observe that, due to the behavior of the function arg(z) in A, z−iγ
= z−iγ e2πγ . Thus, in (21), the multivaluation of the

numerator cannot be compensated with the multivaluation of the denominator, and so this metric is excluded. In the same
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way, it is easy to see that (22) is never well defined in A. Hence we also exclude it. On the other hand, (20) is well defined
only when we are in one of the following cases.

• If z0 = 0 and Kλ2 + |zγ |2 ≠ 0. The last condition is always satisfied in A if K = 1, 0. When K = −1, it is equivalent to
the condition λ ∉ [e−πrγ , 1]. Such solutions are always radially symmetric.

• If z0 ≠ 0, γ ∈ N and Kλ2 + |zγ − z0|2 ≠ 0. The last condition is always satisfied if K = 1. However, if K = 0, it is
equivalent to the condition |z0| ∉ [e−rγπ , 1], and, if K = −1, it reduces to |z0| ∉ [e−rγπ

− λ, 1 + λ]. These solutions are
not radially symmetric.

Hence, we have obtained all the solutions of the first type as stated in Theorem 1.
Let us consider now the case K |A|

2
+ |C |

2
= 0, and so it must hold that K = 0,−1.

Then, writing

KAB + CD = d, (23)

(16) can be simplified as

eu =
4γ 2

|z|2(γ−1)

(K |B|2 + |D|2 + 2|d ‖ z|γ cos(arg d + γ arg z))2
.

Because of the condition K |A|
2
+ |C |

2
= 0, we have that d = 0 if K = 0 and |d| = 1 if K = −1. Thus, if K = 0, eu is well

defined if and only if D ≠ 0. We then obtain the solutions (2) (for γ > 0). When K = −1, we have to impose that γ ∈ N
and |D|

2
− |B|2 ∉ [−2, 2] for eu to be well defined. This solution corresponds to the not radially symmetric solution (5).

Now, if d is as in (23) then (17) can be written as

eu =
4γ 2e2(γ arg z−log |z|)

(K |B|2 + |D|2 + 2|d|eγ arg(z) cos(arg(d)− γ log |z|))2
.

Then it is easy to see that, if K = 0, and so d = 0, the function eu is not well defined. If K = −1, we need that |B|2 = |D|
2 and

π/2 + kπ ∉ [arg(d), arg(d) + γ rπ ] ∀k ∈ Z (in particular γ < 1/r) in order that eu is well defined in A. As the condition
g(1) = ψ(1) ∈ D is necessary, we have that cos(arg(d)) > 0. We then obtain the radially symmetric solutions in (4).

Finally, from (23), the expression of (18) reduces to

eu =
4

|z|2(r(K |B|2 + |D|2)+ 2|d|(sin(arg d) log |z| + arg z cos(arg d)))2
.

If K = 0, as d = 0, this conformal factor is well defined provided that D ≠ 0. Thus, calling λ2 = 1/(r|D|)2, we obtain the
solutions in (2) (for γ = 0). If K = −1, we need to impose that arg d = π/2 + kπ for some k ∈ Z, that is, d = (−1)ki, and
that (−1)k(|D|

2
− |B|2) ∉ [0, 2π ]. Calling r(|D|

2
− |B|2)(−1)k = λ, we obtain the solutions in (3). This concludes the proof

of Theorem 1.

3. Necessary and sufficient conditions for existence

The following lemma follows from a simple computation that we omit.

Lemma 2. Let u ∈ C2(A) be a solution to (P) given by one of the expressions (1)–(5) in Theorem 1. Then, its associated constants
c1, c2 ∈ R are given as follows.

• For u as in (1),

c1 = S
−Kλ2 − |z0|2 + 1

λ
, c2 = S

erπγ (Kλ2 + |z0|2)− e−rπγ

λ
,

where

S =


sign(1 − λ) if K = −1, z0 = 0
1 otherwise.

• For u as in (2), c1 = −
γ

λ
and c2 =

eπrγ γ
λ

.
• For u as in (3), c1 = 2sign(λ), and c2 = −2sign(λ).
• For u as in (4), c1 = 2 sin(θ), and c2 = −2 sin(θ + rπγ ).
• For u as in (5), c1 = −|λ|, and c2 = |λ|eπrγ .

Now, we use Lemma 2 to deduce for which values of K , c1, and c2 a solution of (P) exists.

Corollary 1. Given c1, c2 ∈ R, there exists a solution to problem (P) if and only if

• K = 1 and c1 + c2 > 0;
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• K = 0 and (i) c1 + c2 > 0 with ci < 0 for some i = {1, 2}, or (ii) c1 = 0 = c2;
• K = −1 and (i) c1 + c2 > 0 with c1 < −2 and c2 > 2 (or with c1 > 2 and c2 < −2), or (ii) c1 = ±2 and c2 = ∓2,

or (iii) c1 + c2 < 0 with 0 ≤ |ci| < 2 for both i = {1, 2}.

Proof. When K = 1, all the solutions are given by (1). Then, since

c1 =
−λ2 − |z0|2 + 1

λ
, c2 =

erπγ (λ2 + |z0|2)− e−rπγ

λ
, (24)

a simple computation shows that c1 + c2 > 0. Conversely, if we consider c1 and c2 such that c1 + c2 > 0, taking z0 = 0, it is
easy to obtain two constants λ, γ > 0 such that formula (24) is satisfied. Thus, for K = 1, the condition c1 + c2 > 0 is also
sufficient for the existence of a solution. Moreover, these constants are completely determined by the conformal structure
of A (given by r). Observe that, if the solution is given by (1), for all the values K = 1, 0,−1 we had the restriction γ ∈ N
if z0 ≠ 0. Therefore, in such cases the choice of c1 and c2 will have another technical restriction in terms of the conformal
structure, in order to obtain a solution.

When K = 0, we have more possibilities, since the solutions to (P) are given by either (1) or (2). If the solution is given
by (1), then

c1 =
−|z0|2 + 1

λ
, c2 =

erπγ |z0|2 − e−rπγ

λ
, (25)

and because of the restrictions in Theorem 1 we deduce that c1 + c2 > 0 and that (i) if |z0| > 1, then c1 < 0 and c2 > 0, and
(ii) if |z0| < e−rπγ then c1 > 0 and c2 < 0. Conversely, if we have c1 and c2 such that c1 + c2 > 0, c1 < 0 and c2 > 0, then
we can chose z0 = 0 and find λ, γ > 0 (unique for each fixed r > 0) such that (25) holds.

On the other hand, if the solution is given by (2) and γ = 0, as c1 = 0 = c2, themetric always exists, given any parameter
λ > 0, for any conformal structure. If γ ≠ 0 in (2), then

c1 =
−γ

λ
, c2 =

erπγ γ
λ

, (26)

and so c1 + c2 > 0, c1 < 0, and c2 > 0. Hence, given c1 and c2 under these assumptions, we trivially find λ, γ > 0 such that
(26) is satisfied. Looking at the solution (2) and the solution (1) when z0 = 0, we see that they differ by an inversion; that
is, the role of c1 and c2 in (26) and (25) is interchanged.

If K = −1, the solution u to (P) can be given by formulas (1) or (3)–(5). If u is given by (1), then from Lemma 2 we know
that

c1 = S
λ2 − |z0|2 + 1

λ
, c2 = S

erπγ (−λ2 + |z0|2)− e−rπγ

λ
, (27)

and a simple computation shows that c1 + c2 > 0. Moreover, from the restrictions in Theorem 1, we have that

(i) if z0 ≠ 0, then |z0| > 1 + λ, and so c1 < −2 and c2 > 2, or |z0| < e−rπγ
− λ, and therefore c1 > 2 and c2 < −2;

(ii) if z0 = 0, then either λ > 1, and so c1 < −2 and c2 > 2, or λ < e−rπγ , and then c1 > 2 and c2 < −2.

Conversely, consider c1 and c2 such that c1 + c2 > 0 and c1 < −2 (respectively, c1 > 2) and c2 > 2 (respectively, c2 < −2).
Then, at least for the case z0 = 0, we can always find (just by solving a second-order equation) parameters γ > 0 and λ > 1
(respectively, λ < e−rπγ ) such that (27) holds.

By means of Lemma 2, if c1 = ±2 and c2 = ∓2, we can always obtain a solution of type (3) for a convenient choice of
λ ∉ [0, 2πr] provided that the equalities c1 = 2sign(λ) and c2 = −2sign(λ) are satisfied.

If the solution u is given by (4), we have

c1 = 2 sin(θ), c2 = −2 sin(θ + rπγ ), (28)

for a certain θ ∈ R and γ > 0 under the restrictions

π/2 + kπ ∉ [θ, θ + γ rπ ], ∀k ∈ Z, cos(θ) > 0. (29)

Thus it is easy to deduce that c1 + c2 < 0 and that 0 ≤ |ci| < 2 for both i = {1, 2}. Conversely, because of the behavior of
the sin and cos functions, given c1 and c2 under these assumptions we can always find θ ∈ R and γ > 0 such that (28) and
(29) are satisfied.

Finally, if the solution is given by (5), as

c1 = −|λ|, c2 = |λ|eπrγ , (30)

we are led again to the relation c1 + c2 > 0; and since in this case λ ∉ [−2, 2], then c1 < −2 and c2 > 2. But it is easy to see
from (30) that we have a restriction involving the conformal structure. Onlywhen c1/c2 = −eπrγ for a certain γ ∈ Nwewill
obtain solutions of type (5). Therefore, not all the conformal structures are admissible for the existence of such solutions. �



Author's personal copy

2096 A. Jiménez / Nonlinear Analysis 75 (2012) 2090–2097

4. Classification of constant curvature annuli

As explained in the introduction, the solutions to (P) provide Riemannian annuli of constant curvature with constant
geodesic curvature on each boundary component, and vice versa. Next, we use this connection to give the geometric
counterpart to Theorem 1.

From a geometric point of view, there are several ways to produce constant curvature annuli with constant geodesic
curvature on each boundary component, as we explain next.

(1) First of all, one has the inducedmetric of any annulusA′ inQ(K)whose boundary consists of twodisjoint circles. Observe
that by composing with a finite-folded covering map of this annulus A′ we also obtain conformal metrics in the same
conditions. The conformal structure of such metrics depend on the covering number.

(2) Second, assume that A′ is a radially symmetric annulus in Q(K). That is, its boundary consists of two circles C ′

1, C
′

2, and
A′ is foliated by geodesic arcs in Q(K) that meet both C ′

1 and C ′

2 orthogonally. Then, we may consider the sector of A′

bounded by two of these radial geodesics, which make some angle γ , possibly greater than 2π . After identifying those
geodesics, the quotient space is a topological annulus and the metric ds2K restricted to A′ projects to a well-defined
metric of constant curvature K on this quotient. Hence, we obtain a conformal metric satisfying the desired conditions.
One can make similar constructions in the following cases.

(3) When K = 0: by considering a strip in R2 instead of a radially symmetric annulus, and identifying two different line
segments orthogonal to the boundary of the strip.

(4) When K = −1: by considering the region of Q(−1) ≡ D bounded by two horocycles with the same ideal point p ∈ S1,
together with two geodesic arcs in Q(−1) starting at p, and identifying these arcs.

(5) When K = −1: by considering the region of Q(−1) ≡ D bounded by two circle arcs with common ideal endpoints
p1, p2 ∈ S1, together with two geodesic arcs in Q(−1) which meet the previous two circles orthogonally and that we
identify.

With this, let us prove as a consequence of Theorem 1 that these five types of Riemannian annuli provide all possible
conformal metrics of constant curvature K on an annulus A, with constant geodesic curvature on ∂A.

Theorem 3. Let (Σ, dσ 2) be a Riemannian surface diffeomorphic to a closed annulus. Assume that dσ 2 has constant curvature
on Σ , and constant geodesic curvature along each boundary component of ∂Σ . Then, (Σ, dσ 2) is isometric to one of the five
examples of Riemannian annuli described above.

Proof. Up to a conformal change of coordinates,wemayview (Σ, dσ 2) as (A, eu|dz|2), whereA = {z ∈ C : e−rπ < |z| < 1}
for some r > 0, and u is a solution to (P) for some adequate constants K , c1, and c2. We now analyze from a geometric point
of view the possible expressions for u, as given by Theorem 1.

We consider first the solutions given by (1). In this case,we knowby the proof of Theorem1 that the associated developing
map is g(z) = ψ(zγ )with γ > 0 and ψ(ξ) =

Aξ+B
Cξ+D a certain Möbius transformation.

If z0 ≠ 0, we have the restriction γ ∈ N. Thus, g is univalued on A. Moreover, g(A) is a topological annulus A′ in Q(K)
whose boundary consists in two circles, and the map g defines a γ -folded covering map from A into A′. Thus, by Remark 1,
we see that (A, eu|dz|2) is isometric to the annulusA′ endowedwith themetric ds2K , covered a number γ ∈ N of times. That
is, (A, eu|dz|2) is isometric to the first type of canonical annulus of constant curvature defined before.

Now, suppose we are in the case when z0 = 0, and so γ is not necessarily an integer. The multivalued function zγ maps
A into a piece of the annulus B = {ξ ∈ C : e−rπγ < |ξ | < 1} bounded by the segment [e−rπγ , 1] and R2πγ ([e−rπγ , 1]),
where Rt denotes from now on the rotation by angle t . These two segments correspond to the splitting by zγ of the segment
[e−rπ , 1]. Because of the condition z0 = 0, we have from (19) that KAB + CD = 0. Then it is easy to prove that, for each
θ ∈ R, ψ ◦ Rθ ◦ ψ−1

= φ, where φ is an isometry of Q(K) described in (8). That is, for each θ ∈ R, g(eiθ z) = φθ (g(z))
for a certain isometry of Q(K), φθ . On the other hand, observe that this kind of metrics coincides with one of the canonical
solutions that solve the Newmann problem in R2

+
, given by formula (5) in [9]. Thus, we have from Lemma 1 in [9] that, since

[e−rπ , 1] ⊂ R+, g([e−rπ , 1]) is a geodesic arc in Q(K). Hence, g(A) is a piece of an annulus A′ which is radially symmetric,
that is, foliated by geodesic arcs meeting ∂A′ orthogonally. These geodesic arcs are the image of the segments orthogonal to
∂A that foliateA. Such a piece, g(A), is bounded by two of those geodesic arcs thatmake an angle 2πγ > 0, where γ can be
greater than 1. As explained before, they correspond to the splitting of the segment [e−rπ , 1]. We see then that (A, eu|dz|2)
is isometric to the domain g(A), where the extremal geodesic arcs are identified, endowed with the projection of ds2K . Thus,
these solutions correspond to canonical annuli of type (2)mentioned before.

Consider now the case K = 0, when the solution is given by (2) with γ ≠ 0. We have again, by the proof of Theorem 1,
that g(z) = ψ(zγ ), where now the Möbius transformation ψ(ξ) =

Aξ+B
Cξ+D satisfies that C = 0, that is, it is the composition

of a dilation with an isometry of Q(0) ≡ R2. Thus, g(A) lies in an annulus A′, which is radially symmetric in Q(0), and the
image of the segments orthogonal to ∂A that foliate A are segments (and so geodesic arcs) in A′ which are orthogonal to
∂A′. As in the case of the solutions of type (1), g(A) is a portion of such an annulus A′ delimited by two of those segments
which correspond to the split of the segment [e−rπ , 1] and that make an angle 2πγ , possibly greater than 2π . Hence, we
are led again in this case to an annulus of type (2).
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If γ = 0 in formula (2), we know that g(z) = ψ

−

i
r log z


, where, as before, ψ is the composition of a dilation with

an isometry of Q(0). The multivalued function −
i
r log z maps A into the strip Γ = {w ∈ C : 0 < Imw < π}, where the

segment [e−πr , 1] splits into the vertical segments S1 = {ξ ∈ Γ : Reξ = 0} and S2 = {ξ ∈ Γ : Reξ = 2π/r}. So, g(A)
is a piece of the strip ψ(Γ ) bounded by the segments ψ(S1) and ψ(S2). This solution makes (A, eu|dz|2) isometric to the
domain g(A), whereψ(S1) andψ(S1) are identified, endowedwith the projection of ds20. Thus, it corresponds to an annulus
of type (3) described before.

Assume next that K = −1 and that the solution is given by formula (3). Then, the developing map associated to it is
g(z) = ψ(− i

r log z), where ψ(ξ) =
Aξ+B
Cξ+D is a Möbius transformation satisfying |A| = |C |, i.e. it maps the point of infinity

into a point p =
A
C ∈ ∂D. Thus, we deduce that g(A) lies in ψ(Γ ), which is the region limited by two horocycles C1 and C2

that are tangent at p. Observe also that the image byψ of the vertical segments foliating Γ will be arcs of curves that start at
p and which are orthogonal to both C1 and C2. Hence they are geodesic arcs that foliate the region between C1 and C2. Two
of those geodesic arcs, corresponding to the splitting of the segment [e−rπ , 1], are identified to obtain the quotient which,
with the projected metric ds2

−1, is isometric to (A, eu|dz|2). These solutions correspond with annuli of type (4) mentioned
before.

If K = −1 and the solution is given by the formula (4), then the associated developing map is g(z) = ψ(z−iγ ), where
γ < 1/r and the Möbius transformation ψ(ξ) =

Aξ+B
Cξ+D is such that |A| = |C | and |B| = |D|. Note that the multivalued

function z−iγ maps C1 into the segment S1 = [1, e2πγ ] and C2 into its rotated S2 = Rπγ r([1, e2πγ ]). And the two circle arcs
centered at the origin with radii 1 and e2πγ , respectively, that join the endpoints of S1 and S2, correspond to the splitting by
the function z−iγ of the segment [e−rπ , 1]. Thus A is mapped by z−iγ into the region delimited by S1, S2, and these two circle
arcs. On the other hand, it is easy to check thatψ maps the line passing through the origin corresponding to the arguments
π/2 − θ and −π/2 − θ (where θ is the parameter appearing in (4)) into ∂D. As a consequence, all the circles centered at
the origin (since they are orthogonal to such a line) will be mapped by ψ into geodesics of Q(−1) ≡ D that will foliate
g(A). By all the reasoning before, we deduce that g maps A into the region bounded by (i) two circle arcs (the image of
C1 and C2) that meet at two points p1 = A/C, p2 = B/D ∈ ∂D with angle πγ r and, (ii) two geodesic arcs orthogonal to
them. These geodesic arcs that we identify correspond to the splitting by g of the segment [e−rπ , 1]. Hence, (A, eu|dz|2)
is isometric to this quotient of g(A) endowed with the projection of the metric ds2

−1. It is then a Riemannian annulus of
type (5).

Finally, if K = −1 and the solution is given by formula (5), we have again g(z) = ψ(zγ ). Now, γ ∈ N, andψ(ξ) =
Aξ+B
Cξ+D

is such that |A| = |C |. Thus we can deduce as before that g is a γ -folded covering map from A into an annulus A′
⊂ Q(−1).

In this case, the boundary of A′ is intersected orthogonally by two curves with common ideal point p =
A
C ∈ ∂D. These

curves are the images by g of the real and the imaginary axes. Thus, we are led again in this case to an annulus of type (1). �
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