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Abstract

We present results of light scattering properties for ensembles of randomly oriented, coated spheroidal
particles with an equivalent-volume size parameter kr

%2
"8 and axial ratios e"0.6,1, and 1/0.6. MuK ller

matrix elements F
ij
(h) have been calculated using Waterman's ¹-matrix approach, as modi"ed by Peterson

and StroK m for inhomogeneous particles, together with Mishchenko's orientation averaging procedure.
Di!erences between oblate and prolate particles with the same short-to-long axis ratio, as well as between
spherical and nonspherical scatterers, are outlined. Additional calculations for size parameters 1, 5 and 10
(not shown) have also been carried out for checking purposes. ( 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Many e!orts have been made to extend the study of light scattering properties beyond Mie
theory [1] for monodisperse, homogeneous spherical particles. Applications to polydisperse
systems were then followed by the Aden-Kerker theory [2] for coated spherical scatterers. The next
logical step * scattering by nonspherical particles * was taken in the form of a diversity of
theories. One of them, Waterman's extended boundary condition method [3,4] (EBCM), also
called the ¹-matrix method, has turned into one of the most powerful and e$cient methods for
scattering by nonspherical particles. Although it can be applied to virtually any kind of nonspheri-
cal particles, it is most e$cient for axisymmetric scatterers, and Mishchenko [5] has developed an
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elegant and highly e$cient method to extend a single-particle result to the case of particles in
random orientation.

The ¹-matrix method has been extensively used for homogeneous particles (plus randomly
oriented and/or polydisperse systems) [6]. But, considering that a ¹-matrix extension for coated
and multicoated dielectric objects was given by Peterson and StroK m [7,8] in 1974, the number of
applications dealing with scattering properties of coated nonspherical systems using the EBCM
has been rather small [9]. This might be due to the fact that ¹-matrix computations for coated,
nonspherical particles can become both unstable and highly time-consuming, so that other
methods can become more attractive, especially if no orientation averaging is necessary [10}13].

Still, the EBCM has showed its e!ectiveness in the study of nonspherical, axisymmetric particles
in random orientation, and this feature can be exploited in an extension to coated particles. Real
particle systems include pharmaceutical applications as drug carriers, studies of erythrocytes and
magnetic materials for recording [14]. The possibility of evaluating the core of a composite particle
with nondestructive methods makes light scattering a valuable tool as a probing and sizing
technique.

In the present paper we intend to show the results of light scattering calculations for a suspension
of randomly oriented, coated spheroids. We report results in the form of MuK ller matrix elements
F
ij
(h) for a range of relative core size and eccentricities. Due to the number of parameters involved

(refractive indices, shape, outer and inner sizes), a wide range of sizes and shapes cannot be
examined without enlarging the data volume to unacceptable levels, so we have restricted ourselves
to the study of a single value of outer size kr

%2
(where k is the wavenumber of light in the suspending

medium and r
%2

is the radius of the sphere with a volume equal to that of the particle), a single
combination of refractive indices, and two values of eccentricity (three including the spherical
case). While the results can obviously not be generalized to an arbitrary size, a comparison
of data for di!erent eccentricity values can yield some conclusions on the general behavior or
light scattering properties with equal-volume particles. Comparison to additional data for size
parameters kr

%2
"1, 5, and 10 will help us to distinguish whether a particular scattering feature is

characteristic to the particle size studied, or can be thought of as a more general light scattering
property.

2. Theory

The so-called MuK ller, or scattering, matrix, describes the e!ect of a scattering volume on a light
beam. The light beams of the incident and scattered radiation can be described by their Stokes
vectors I

*
, I

4
; they are related to each other by means of the so-called MuK ller F matrix as

I
4
"

C
4#!

4pR2
F(h)I

*
, (1)

where R is the distance between the scattering system and the detector, and C
4#!

its scattering cross
section. Our goal is to calculate F, which (together with cross sections) contains all available
information about the angular variation of static light scattering properties. When the scattering
system is composed of randomly oriented, axially symmetric particles in single scattering, the
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MuK ller matrix has the following form [15]:

F(h)"C
F

11
(h) F

12
(h) 0 0

F
12

(h) F
22

(h) 0 0

0 0 F
33

(h) F
34

(h)

0 0 !F
34

(h) F
44

(h)D. (2)

In the "rst step of the calculation, the ¹-matrix is computed for a single particle in the so-called
natural reference system (with the z-axis in the direction of the symmetry axis) [5]. For the case of
a two-layered axisymmetric object (characterized by relative refractive indices m

1
for core and

m
2

for shell), the ¹ matrix is given by [7]:

T"C
¹11 ¹12

¹21 ¹22D"![B
2
#BB

2
)T

1
] ) [A

2
#AA

2
)T

1
]~1, (3)

where T
1

is the transition matrix for the inner layer, as derived in the homogeneous case [7,9], but
assuming refractive indices m

1
/m

2
, for the particle, and 1 for the medium, and an incident radiation

wavenumber k
0
m

2
, where j

0
"2p/k

0
is the vacuum incident wavelength. The matrices B

2
, A

2
are

such that !B
2
) (A

2
)~1 is the ¹-matrix for the full particle, assumed homogeneous with refractive

index m
2
, and in a dispersion medium with refractive index equal to 1. In this case, the incident

wave number is taken as k
0
. Finally, the matrix BB

2
is the same as B

2
, except that the Bessel

functions of the "rst kind with argument kr are replaced by Hankel functions with the same
argument; the same applies to the AA

2
and A

2
matrices.

In the second step of the process, the MuK ller matrix elements are expanded in a set of generalized
spherical functions [16,17] Ps

./
(h):

F
11

(h)"
=
+
s/0

as
1
Ps
00

(cos h),

F
22

(h)#F
33

(h)"
=
+
s/2

(as
2
#as

3
)Ps

22
(cos h),

F
22

(h)!F
33

(h)"
=
+
s/2

(as
2
!as

3
)Ps

2~2
(cos h),

F
44

(h)"
=
+
s/0

as
4
Ps
00

(cos h),

F
12

(h)"
=
+
s/2

bs
1
Ps
02

(cos h),

F
34

(h)"
=
+
s/2

bs
2
Ps
02

(cos h).

(4)

Finally, the expansion coe$cients as
i
, bs

i
are related to the natural ¹-matrix elements [5]. Extinction

and scattering cross sections can also be calculated from the ¹-matrix elements, if necessary.
In practical computations, the series expansion for the incident and scattered "elds, in which the

EBCM matrix is based [18,19], must be truncated after a "nite number of terms n
.!9

. This, in turns,
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yields an upper value of 2]n
.!9

for MuK ller matrix element expansions (Eq. (4)), and limits the
size of the ¹-matrix submatrices ¹ij (i,j"1, 2; see Eq. (3)) to a size n

.!9
]n

.!9
each. Too high

a value of n
.!9

will result in instabilities in the matrix calculation process and an excess of computer
usage; on the other hand, a value of n

.!9
too low will prevent calculations from converging within

the desired accuracy. The optimum number of terms n
.!9

is established by calculating the values of
C

1
("C

%95
, when the azimuthal number is set as m"0) and C

2
("C

4#!
,m"0) until the relative

di!erences of C
1
(n

.!9
) and C

1
(n

.!9
!1) are less than a given accuracy value * (same procedure

for C
2
).

However, we have two characteristic matrix sizes due to the existence of both core and shell, and
this requires the calculation of two sets of matrices, whose size can be very di!erent. This suggests
the use of two of n

.!9
values. A possible solution is to check the matrix size requirements for both

the inner boundary (matrix T
1
in Eq. (4)) and the outer boundary (matrices A

2
, B

2
, AA

2
, BB

2
), thus

resulting in two n
.!9

parameters: n
.#

, n
.4

for core and shell expansions, respectively. A similar
criterion is used for light scattering calculations of coated spherical particles [15,20]; in accordance
with it, we furthermore demand that n

.4
'n

.#
. Eq. (4) can be calculated by making (¹ij

1
)
nn{

"0 for
Max(n,n@)'n

.#
.

Once the whole ¹-matrix (with ¹ij size n
.4

]n
.4

) is obtained, we can calculate the expansion
coe$cients and the F

ij
(h) elements, whose series expansion goes from 0 (or 2, in some expansions)

to s
.!9

"2]n
.4

. However, it is often not necessary to use all the ¹-matrix elements to calculate the
expansion coe$cients of Eq. (5) within the desired accuracy. Since the "nal calculations are roughly
proportional to the fourth power of n

.4
in both computer time and memory usage, it becomes

convenient to substitute n
.4

with n
.42

(n
.4

such that the use of (¹ij)
nn{

elements with n, n@(n
.42

will still yield a series expansion in Eq. (4) that converges to the desired accuracy. That is, n
.4

is
used to accurately obtain the ¹-matrix, while n

.42
is used to calculate cross sections and MuK ller

matrix elements. This procedure requires a negligible programming e!ort and speeds up the
computations.

The convergence in N
'

(the number of Gauss quadrature points for the calculation of matrix
elements) is also calculated for both core and shell, following a procedure similar to that of Barber
and Hill [21]. As a rule of thumb, we have found N

'
"4n

.4
to be a good value in all but the most

demanding cases (high nonsphericity values, for instance).
The following convention is used. kr

%2
is the dimensionless equal-volume-sphere size parameter

for the whole particle; q is the core/particle size ratio; e is the eccentricity, or axial ratio, of the
particles (e(1 for a prolate spheroid; e'1 for an oblate spheroid; e"1 for a sphere).

3. Results and discussion

In this section we report light scattering results for particles with refractive indices 2.32#i0.36
for core, 1.2 for shell and 1 for medium. This choice closely corresponds to particles with a hematite
core and an yttrium basic carbonate coating, for a vacuum wavelength j

0
"488 nm. The accuracy

parameter * is taken as 10~4. The particles to be studied are randomly oriented spheroids with an
equivolume size parameter kr

%2
"8 and eccentricities e"0.6,1 (spheres) and 1/0.6. This will allow

us to compare light scattering properties of particles with equal long-to-short axis ratio both to
each other and to their spherical counterpart. In order to "nd out whether a particular scattering
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Fig. 1. F
11

MuK ller matrix element for an ensemble of (a) coated spheres, and coated, randomly oriented (b) prolate and (c) oblate
spheroids, as a function of scattering angle h and relative core size q. All "gures are for a size parameter kr

%2
"8 and refractive indices

2.32#i0.36 (core), 1.2 (coating).

e!ect is characteristic of the given size parameter or, on the contrary, can be considered as a more
general feature, a second set of calculations has been made for kr

%2
"1, 5 and 10, and the same

e value; those data are not shown here for brevity.
Figs. 1}6 show all nonzero MuK ller matrix elements for prolate and oblate spheroidal particles with

a 0.6 : 1 axial ratio, as well as those for spheres. For spheres, F
22

/F
11
"1 and F

33
"F

44
. Scattering

angle (the angle between the incident and scattered directions, with h"0 for unscattered radiation
and h"1803 for backscattering) and relative core ratio q are plotted in the horizontal axes.

3.1. The matrix element F
11

Angular scattering patterns can be seen to be similar for prolate and oblate particles with the
same long-to-short axis (Fig. 1). They exhibit some features also seen in earlier works on
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Fig. 2. F
22

/F
11

ratio for an ensemble of coated, randomly oriented (a) prolate spheroids, (b) oblate spheroids.

Fig. 3. F
33

/F
11

ratio for an ensemble of (a) coated spheres, and coated, randomly oriented (b) prolate and (c) oblate spheroids.
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Fig. 4. Same as Fig. 3 for F
44

/F
11

.

homogeneous particle systems, such as a similar pattern for low angle values, whatever the particle
geometry, as well as the overall similarity of F

11
for prolate and oblate spheroids [22]. On the other

hand, nonspherical particles are not always found to be better scatterers in the backscattering
direction. Similarly, our calculations for kr

%2
"1, 5 and 10 also show that F

11
is nearly identical for

oblate and prolate particles with reciprocal axial ratios, but no general conclusion can be drawn on
the backscattering behavior, where spherical particles are only sometimes better scatterers at
h"1803, depending on core and total particle size.

In a more general sense it can be said that F
11

patterns become smoother for nonspherical
particles, showing less rapid variations both for varying h (core size "xed) and for varying q (at
a given angle). This smoothing e!ect can, in fact, be found to take e!ect in all MuK ller matrix
elements and for all sizes studied (kr

%2
"1, 5, 8, 10), being less evident as particles become smaller.

In all three "gures (kr
%2
"8, e"0.6, 1, 1/0.6), F

11
is seen to exhibit similar patterns. As a general

trend, F
11

values increase with q for any angle. However, at about q"0.7 the curves reach local
maxima, thus giving way to lower values for q between 0.7 and 0.9, and again increasing values for
core sizes approaching unity. It is interesting to note that also at kr

%2
"5 and 10 do F

11
!h curves
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Fig. 5. Same as Fig. 3 for F
12

/F
11

.

reach maximum values for a given core size. However, it would be premature to conclude that such
a feature occurs for an arbitrary size range. On the other hand, the di!erences for randomly
oriented particles with reciprocal axial ratios are small enough to make di$cult a characterization
of noneccentricity (oblate/prolate) via F

11
measurements. The spherical}nonspherical di!erences

will be hard to observe in real laboratory systems, where even a small degree of polydispersity will
wipe out the rapidly varying F

11
patterns.

3.2. The ratio F
22

/F
11

This MuK ller matrix element is considered as a good indicator of nonsphericity [23], since it is
equal to unity for spherical particles. However, although it can substantially deviate from unity,
this is not always the case: nonspherical particles can have F

22
/F

11
elements close to 1. This fact

can erroneously lead to think that unity implies sphericity.
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Fig. 6. Same as Fig. 3 for F
34

/F
11

.

This can be seen in Fig. 2. Except for a region at q&0.7}0.8, all values of F
22

/F
11

are very close
to unity at angles smaller than about 903 (in fact, oblate particles with a core size larger than 0.9
show F

22
/F

11
values higher than 0.99 for all angles). When the core size is smaller than 0.6 times the

particle size, the behavior of F
22

/F
11

vs angle is as follows: "rst, it gets very close to 1; then, at
a certain angle (100}1103 for prolate particles, 110}1203 for oblate particles), it decreases until it
reaches a minimum value at h&140}1503, increases again up to about h&1703 and has a "nal
decrement at backscattering. The di!erences between prolate and oblate particles are now more
visible. As mentioned above, the ratio departs from unity at lower angles for prolate particles than
for oblate ones. It can also be seen that the minima at h&1503 are deeper for prolate spheroids.
This behavior, also observed for kr

%2
"10, leads us to think that the F

22
/F

11
ratio can be used to

distinguish prolate and oblate particles of the same volume and axial ratio also in the case of
inhomogeneous systems, just as it has been used in the past for homogeneous particles. Particles of
a smaller size (data not shown) yield almost complete polarization (F

22
/F

11
+1), which would

make particle sizing more di$cult. However, even for kr
%2
"1, di!erences between prolate and

oblate particles are noticeable when the core size is large enough.
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As core size increases, a new feature appears. For prolate spheroids with a q&0.7, the F
22

/F
11

ratio departs from unity at much smaller angles, and F
22

/F
11

!h curves show a series of deeper
minima than for equivolume oblate spheroids. Furthermore, the maxima and minima observed for
lower q in the 150}1803 h range disappear. It is interesting to note that this decrease in F

22
/F

11
is

located at the same core value region (q&0.7) where the local maximum of F
11

was observed in
Fig. 1. This poins to a `transition regiona in the q&0.7 region, where light scattering properties vs
angle behave di!erently, although this cannot be extrapolated to other size parameters, and thus
cannot be considered as a particular feature for a "xed core size (similar behavior is seen for
kr

%2
"10 but not for kr

%2
"5).

3.3. The ratios F
33

/F
11

and F
44

/F
11

Since F
33
"F

44
for spheres (Figs. 3a and 4a), any di!erence between these MuK ller matrix

elements indicates a deviation from sphericity. For all three particle types, the ratios F
33

/F
11

(h,q)
plot takes values close to unity for small q and h values, whereas the behavior is opposite in the high
(h,q) corner, with ratios approaching !1. This is a common feature for all but the smallest particle
sizes studied in this work. We cannot always expect this behavior in the general case, not even for
this particular size parameter, since it can merely re#ect the change in scattering curves from
a particle with a large, absorbing material (q"0) to that with a small, nonabsorbing material
(q"1). We will therefore focus on the di!erences between oblate, prolate and spherical particle
systems, as well as on the gradual variation of scattering properties as the core size increases.

The most evident distinguishing feature about the ratio F
33

/F
11

for a sphere respect to an
spheroid (Fig. 3) is its very fast variation when either angle or core size is changed. For any core
value, ratio-angle curves show maxima and minima which are both larger in number and more
rapidly varying than for spheroidal particles (this behavior is also clearly visible for kr

%2
"10,

present at a smaller scale for kr
%2
"5, and is absent for kr

%2
"1). In the side scattering range,

F
33
'F

44
for kr

%2
"8 (compare Figs. 3b and 4b, 3c and 4c), as well as for kr

%2
"5,10. The

di!erences between F
33

and F
44

are smaller for oblate spheroids, in agreement with the results of
Asano and Sato [22] for homogeneous spheroids, and of Mishchenko [23] for homogeneous
cylinders.

Di!erences are also found in the backscattering region, where ratios for oblate and prolate
particles are di!erent. While theory yields that F

33
/F

11
"F

44
/F

11
"!1 for spheres at h"1803,

these ratios have di!erent values for nonspherical particles; for some value of q,F
44

/F
11

can even be
positive. This suggests that light scattering properties in the backscattering region can be a useful
tool for particle sizing, and also agrees with the well-known fact that backscattering is most
sensitive to particle shape. We can also see that, for all sizes and shapes studies, F

33
/F

11
+F

44
/F

11
when the core is large (q'0.9).

3.4. The ratio F
12

/F
11

As in all other MuK ller matrix elements, linear polarization (other authors de"ne it as minus
F
12

/F
11

) show faster variations with both core and angle in the case of spherical particles (compare
Fig. 5a}c). For spheres, h}q plots yield a set of oblique polarization strips, so that a particular
maximum (or minimum) is attained at decreasing angle values as core size increases. For all but the
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smallest and largest values of q, angular scattering curves show extreme values of polarization, both
positive and negative.

For nonspherical particles, polarization values do not reach the extremes ($1). Minimum
polarization values are found for an angular range centered at about 1203, when core values are
small, and about 603, when core values are large. But, unlike the smaller particles, where
a polarization miminum can be found at intermediate angle for any core value, nonspherical
particles with kr

%2
"8 and 10 have positive polarization values for a range or core sizes. When

q approaches 0.7, polarization-angle curves have positive values; for oblate particles, such curves
have more local maxima and minima, specially at angles less that 903.

Asano's results [22] about the degree of polarization being close to that of the equivolume
spheres for small scattering angles are also found for coated spheroids. However, our data for
kr

%2
"8 show that they only hold for small angles (h(303). Data from other particle sizes indicate

that the angle range of spherical}nonspherical coincidence gets smaller for larger size parameters
(h(603 for kr

%2
"5, h(153 for kr

%2
"10).

3.5. The ratio F
34

/F
11

Several features are common for F
34

/F
11

(Fig. 6) and F
12

/F
11

(Fig. 5). As in the case of linear
polarization, the ratio F

34
/F

11
is more strongly core- and angle-dependent for spheres than for

spheroids. When particles are nonspherical, this ratio does not reach extreme values ($1). This
feature, also found for kr

%2
"1, 5, 10 suggests that F

34
/F

11
values close to plus or minus one might

be a hint of particle nonsphericity in the general case. This has also been observed by Kuik [24] for
monodisperse, randomly oriented ensembles of spheroids and cylinders with a dimension ratio
(long-to-short axis, or diameter-to-length) as high as 7. The maximum values of F

34
/F

11
can be

seen to reside in the region of q"0.6}0.8 for angles less than about 1003. In the forward and
backward scattering regions, this ratio, like F

12
/F

11
, is close to zero (being identically zero for

h"03,1803, as predicted by the theory). F
34

/F
11

is also seen to be similar for spheres and
nonspheres up to a certain angle; again, this angle is smaller as the size parameter grows larger.

4. Concluding remarks

We have presented computed results on light scattering and polarization properties for some
particle systems of spheroids on random orientation using the ¹-matrix method [3] as modi"ed by
Peterson and StroK m [7,8]. All six nonzero MuK ller matrix elements have been calculated and
presented; together with scattering and extinction cross sections, they yield all the information
available on static light scattering by a volume element. We cannot draw general conclusions due
to the large number of parameters involved, not only particle size and shape, but also core size and
composition; our aim was to show light scattering di!erences (respective to a sphere) when an inner
core exists and has to be taken into account

The well-known fact that the EBCM can be ill-conditioned for particles with large size and/or
deviation from eccentricity is enhanced by the structure of the ¹ matrix for coated particles; this
comes mainly from the AA

2
matrix (Eq. (3)) whose elements depend on the product of two Hankel

functions and can therefore can reach very high values. Several checks have been made to ensure
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data quality. Some inequalities between the elements of the MuK ller matrix have been used for
checking purposes at all angle values [25]. Calculations for spheres have been compared to data
obtained from another, independently developed computer code based on the Aden-Kerker theory
for coated spherical particles [2,26]. For the case of spheroids, comparisons with respect to the
homogeneous ¹-matrix theory were made by making equal both core and coating refractive index,
as well as by making m

4)%--
"1. When both refractive indices are made nonabsorbing (no imaginary

part), scattering and extinction cross sections coincide.
The data showed in the present paper, plus those used for checking purposes (kr

%2
"1, 5, 10)

represent calculations for a total of 204 particle types in random orientation, with a total CPU
usage of 5.1 h on a Pentium computer (200 MHz, 32 Mbyte RAM). In spite of the large number of
particles, we should stress that they only represent a minimum fraction of all possible compositions
of particle size, shape, and composition. Future works should address particles of other shapes,
such as cylinders. An interesting "eld of study is that of concave particles. All light scattering
studies of coated particles have been focused on spheres or spheroids, and no data exist on
inhomogeneous convex bodies, whose behavior can be signi"cantly di!erent to those of equiva-
lent-volume concave ones. Chebyshev particles, such as those used by Wiscombe [27], would
provide adequate checking particles.
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