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Abstract

In this paper we study flat surfaces in the hyperbolic 3-space and the de Sitter
3-space with the conformal structure induced by its second fundamental form and give
a conformal representation of such surfaces in terms of holomorphic data.
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1 Introduction

Partial differential equations on surfaces whose solutions could be represented in terms of
holomorphic functions on Riemann surfaces have been extensively investigated. Famous
examples are Laplace’s equation Au = 0 and Liouville’s equation Au = e".

An example from geometry is the minimal surface equation in the Euclidean space
R? whose holomorphic representation gives the global version of the Enneper-Riemann-
Weierstrass representation, which is essentially due to Osserman [O]. This representation
has been crucial in both reaching a rather exhaustive understanding and finding examples
of complete minimal surfaces. In spaces of other constant sectional curvature such as the
hyperbolic 3-space H? or the de Sitter 3-space S? the equation of a surface of constant mean
curvature admits a holomorphic resolution that provides a global complex representation
which has been used in the study of global properties of these surfaces, (see [AA], [B], [UY]).

The fully non-linear Monge-Ampere equation det V2u = 1 which arises in affine differ-
ential geometry (see [FMM], [J]) and in the study of the second fundamental form of flat
surfaces in H? and S?, can be solved using holomorphic data. In this paper we consider flat
surfaces in H* and S? with the conformal structure induced by its second fundamental form.
We will prove that these surfaces share a fundamental property with minimal surfaces in R?
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and surfaces of constant mean curvature in H® and S}, they possess a “conformal represen-
tation” in terms of holomorphic data which involve its “hyperbolic” Gauss map (Theorem

1).

2 Some Preliminaries

Let L* be the Minkowski 4-space endowed with linear coordinates (o, 1, T2, x3) and the
scalar product, (.,.) given by the quadratic form —z3 + x? + x3 + 3. We set the two
hyperquadrics

H® = {($0,$1,$27$3) € IL14/ —mé +x% —I—:v% +x§ =—1, 29 > O},

Si’ = {(xo,xl,xg,xg) € ]L4/ —x%+x% —l—:c% +x§ = 1},

with the induced metric from L*. Then, H? is a Riemannian 3-manifold of constant sec-
tional curvature —1 which is called the hyperbolic 3-space. S? is a 3-dimensional Lorentzian
manifold of constant sectional curvature 1 and it is called the de Sitter 3-space.

Let N? denote the positive null cone, that is

N3: {(x07x17x27x3> €L4/ —l'g—i-iC%—l—x%—l-xg:O, Zo >O}

If one considers for all v € N* the halfline [v] spanned by v, then this gives a partition of N
and the ideal boundary S% of H? can be regarded as the quotient of N* under the associated
equivalence relation. Thus, the induced metric is well-defined up to a factor and S2_ inherits
a natural conformal structure as the quotient N® /R

We consider L* identified with the space of 2 x 2 Hermitian matrices, Herm(2), by
identifying (zo, z1, T2, z3) € L* with the matrix

: 3
To+ T3 T1+ 1T
) ( ) =3 e
§=0

ry — ilL‘g To — I3

(10 {01 (0 (10
“=lop1) “T\10) 2=\ i 0) B 0o -1 )

Under this identification, one has (m,m) = — det(m), for all m € Herm(2), and the complex
Lie group SL(2,C) of 2 x 2 complex matrices with determinant 1 acts naturally on L* by
the representation

where

g-m=gmg,
where g € SL(2,C) , g* = 'g and m € Herm(2). Consequently, SL(2,C) preserves the
scalar product and orientations. The kernel of this action is {£l,} C SL(2,C) and
PSL(2,C) = SL(2,C) /{£I>} can be regarded as the identity component of the special
Lorentzian group SO(1,3). This action can be restricted to H* and S} as an isometric and
transitive one. Thus, H® and S? can also be represented as

H’ ={g-e/ g € SL(2,C)}
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and

S ={g-¢;/ g€ SL(2,C)}, je{1,2,3}.

The space N® is seen as the space of positive semi-definite 2 x 2 Hermitian matrices of
determinant 0 and its elements can be written as a ‘@, where ‘a = (a;,a2) is a non-zero
vector in C? uniquely defined up to multiplication by an unimodular complex number. The
map a'@—[(ay,as)] € CP! becomes the quotient map of N* on S2_ and identifies S?_ with
CP!. So the natural action of SL(2,C) on SZ is the action of SL(2,C) on CP' by Mé&bius
transformations.

3 Contact Holomorphic Curves

On

221 22

SL(2,C) = {;: ( S ) | det(z) = 1}

we shall consider the canonical contact structure induced by the contact 1-form
0= ZQQdZH — 212d221.

Let ¥ be a Riemann surface and g : ¥— SL(2, C),

G G
g = < G; GZ ) ) G11Gag — G12Gy =1,

be a holomorphic map such that ¢*Q) vanishes on ¥, then
g—ldg _ Gy —Gi dGy1  dGho _ 0 a2 .
—Ga  Gu dGa  dGa az 0

Definition 1 A holomorphic map g : X— SL(2,C) is called a contact holomorphic map
if g*Q =0 and as; never vanishes on 3.
Thus, if we set

a2

f = w = Qoy,
Q21

the pair (f,w) satisfies the following equality

@) aa=( 1)

Conversely, let f be a holomorphic function and w a holomorphic 1-form on ¥ such that
w # 0 everywhere. Then the ordinary differential equation (2) is integrable and a solution
g is a contact holomorphic map into SL(2,C) but g may not be well-defined on ¥. In fact,
when we consider (f,w) written in an arbitrary complex parameter ¢ as (f(¢), h(¢)d(), every

solution g of (2) is given as
ViooaVe

> >



where V' and W are linearly independent solutions of the ordinary linear differential equation

4 X th X =0
(4) T ¢—/f = 0,

and

h = VWC — WVC'

Definition 2 The pair (f,w) will be called Weierstrass data (complex representation) of g.

4 A Conformal Representation

Theorem A) Let ¥ be a Riemann surface and g : ¥— SL(2,C) a contact holomorphic
map with Weierstrass data (f,w).

) If |f] <1, then g = g- ey : S—H® and ¢35 = g - e3 : B—S? are well-defined flat
Riemannian immersions.

1) If the imaginary part of f, S(f), never vanishes on ¥, then 1y = g-e; : ©—S? is a
well-defined flat Lorentzian immersion.

B) Conversely, let M be a simply connected surface and 1y : M——N a flat immersion, where
N is either H* or S}. If on M we consider the conformal structure determined by the second
fundamental form of 1, then there exists a contact holomorphic map g : M— SL(2,C)
with Weierstrass data (f,w) such that ¢ = 1; for some j € {0,1,3}. Moreover g is unique
up to right multiplication by a constant matriz go with go - €; = e;.

Proof: We consider ¢ = g - e with

Then from (2),
=g < w+ efw 0

and the induced metric is given by

ds® = (d, dip) = — det(dp) = (1 + ff)ww + efw? + efw.

0 efw+w .
),

Since f is a holomorphic function

d(%(1+ef)w+ %(1+6?)w) 0, d(%(l ) %(1 —67>w) ~0

and there exist local functions x, y such that

dx:%(1+6f)w+%(1+€7)wv dy:%(l—ef)w—%(l—ef)w.
with :
dx N\ dy = _72(1 —|fPP)wAw.

4



Because of | f| < 1, (x,y) are new coordinates with ds? = dz?+dy®. Therefore, the immersion
is flat.
In the same way, when v = 1); one gets ds?> = 2dxdy, where
1 1

dr = —fw — fo, dy:§w+§w.

Conversely, if ¢ : M—S? is a Lorentzian immersion with flat induced metric, then there
exists an asymptotic coordinate immersion = + ¢y : M —C such that

(5) ds* = 2dxdy,

and if 1 is an unit normal vector field to the immersion, a straight calculation gives the
following structure equations

Vuw = En,
Yoy = Fn—1,
(6) Yy = G,
Ne = —FY, — By,
ny = —Giy—Fiy,

where £, F and G are smooth functions on M and by (-), and (-), we shall denote the usual
partial derivatives respect to x and y, respectively.

Using the Gauss’ and Codazzi-Mainardi’s equations we have EG — F? = 1, E, = F, and
F, = G,. Hence, as M is simply connected, there exists a well-defined function ¢ on M
such that £ = ¢, ' = ¢5y, G = ¢, and the second fundamental form of the immersion
is given by

(7) do? = ¢ppda® + (byydy2 + 2¢,,dxdy,
with
(8) ¢zz¢yy - iy =1

We shall regard M as a Riemann surface with the conformal structure determined by the
second fundamental form do?.
From (8), we can choose 7 such that ¢,, > 0 and consider the new coordinate immersion

9) Z2=u+10 =y —ip,.

Then, a straight computation gives,

¢a}y —1
10 u— T WYz Y v— | Y-
(10) (& ¢m¢ + (4 ¢m¢
Now, from (6), (7), (8), (9) and (10) we have
(11) do* = L|dz|2

rx



and
(12) (¢m)u = _szv (¢x)v =-"n.

Thus, from (5), (9), (11) and (12), z : M—C is a conformal coordinate immersion and
[,] : M——S?% is a conformal map, which induces on M the flat Riemannian metric |dz|%.
Moreover, from the above expressions, we obtain

_ Py _ O

¢muu_ zy¢m_wa wwvv wz_d))
and by using standard notations of complex analysis, one has
(13> 4(wz>z5 = _wa

Now, let A, B : M—C be global holomorphic functions on M such that [¢,] is repre-
sented as [(A, B)] € CP' = S2_, then

AN =+ = AA AB
wx:A<B>(A’B>:)‘<XB BE)’
for some positive function A € C*°(M). Thus, from (5), (9) and (12), one gets

1 1
5 = <(¢w)27 (%)z> = 5/\2 |ABZ - BAZ|2

and as AB, — BA, does not vanish on the simply connected surface M, there exists a
holomorphic function R : M—C with R? = AB, — BA,. Hence, we can write

(1) 0.-(55 0B )

where C' = A/R and D = B/R. Consequently, from (12) and (14) we have the following
expression for the immersion

(15) b= CC.+C.C CD.+C.D
- CD,+C,D DD,+ D,D
and for its unit normal

__.(-CC.+C.C -CD.+C.D
="\ Cp.-C.p -DD.+D.D )"

If we consider the function f: M——C defined by
¢zy —1
1 S B
1o '= "0
then, from (6), (10), (12), (13) and (14)we obtain (¢,). = —2f(¢,)z and

C.:C. CD: ) _ . CC. CD.
C.D.. D..D. ) °\C.D DD, )’
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As C, and D, cannot vanishing simultaneously, we have
Thus, from (8), (16) and (17), f is a holomorphic function which satisfies

() £ 0.

Finally, from (15) and (17), the immersion ¢ can be recovered as ¢y = —g - e;, where
g : M— SL(2,C) is the contact holomorphic map given by

(1) (5 o)

such that
1, (0 f

and w = dz. On the other hand, if § : M— SL(2,C) is a holomorphic immersion with
1 = —g - ey, then there exists a holomorphic map gy : M— SL(2,C) such that g = ggo,
with go - €1 = e1. Thus (go). = 0 and gy must be constant.

Now, let ¢ : M—N be a Riemannian immersion with flat induced metric, where N = H?
or N = S?, then there exists a coordinate immersion z 4 4y : M ——C such that

(20) ds® = dz® + dy*.
The structure equations are given by

w:m: = ET] + 67%

wwy = F777

¢yy = G77 + E¢:
Ne = —eb, — el
Ny = —€F, —eGhy,

where e = 1if N =H* e = —1if N =S?, E, F and G are smooth functions on M and 7 is
the well-oriented unit normal vector field. From the integrability conditions, there exists a
well-defined function ¢ on M such that £ = ¢,,, F = ¢y, G = ¢y, satisfying (8) and the
second fundamental form of the immersion is given by (7).

We consider the new coordinate immersion

z=u+iv =+ ¢, +i(y + ¢y).

Then

1
do? = ———|dz?

2+ Gy + By
and

(¢_n>u:¢ma (w_TI)v:wy'



Thus, z : M—C is a conformal coordinate immersion and [¢) —n] : M——S?_ is a conformal
map.
Calculating (¥ — 0)yu, (¥ — 1)y, We obtain

1
Y=g —=n)+ 2 = 1)z
As in the above case, (see]GMM]), the immersion can be calculated as

b= CC +4eC,C, CD+4eC,D,
“\ CD+4eC,D, DD +4eD,D,

where C' and D are linearly independent solutions of the ordinary linear differential equation
Xzz = _fX7

and f: M——C is the holomorphic function defined by

f _ ¢yy - ¢J}a} + 22¢zy
2+ Qoo + by

Moreover, from (8), |f] < 1.

Finally, the immersion ) can be recovered as ¢ = ¢g-ey or 1) = g -eg if N = H® or
N = S}, respectively, where g : M— SL(2,C) is the contact holomorphic map given as in
(18) satisfying (19) and w = 3dz. 0

Remark The above conformal representation can be used in the study of global properties
of flat surfaces in H? and S?. For the particular case of flat surfaces in H* the reader can

see [GMM].
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