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Abstract

We study to what extent the known results concerning the behaviour of Hopf
vector fields, with respect to volume, energy and generalized energy functionals, on
the round sphere are still valid for the metrics obtained by performing the canonical
variation of the Hopf fibration.

1 Introduction

Let V : M → TM be a smooth vector field on a manifold. For a given Riemannian
metric g on M the tangent manifold can be endowed with a natural metric gS known as
the Sasaki metric. The volume of V is the volume of V (M) considered as a submanifold
of (TM, gS). Analogously we can define the energy of V as the energy of the map
V : (M, g) → (TM, gS), and more generally, if g̃ is another metric on M , the energy
of V : (M, g̃) → (TM, gS) that we will call the generalized energy Eg̃. On each
manifold, these functionals have a lower bound and then, a natural question arises,
namely that of determining the infimum of their values when acting on vector fields
such that g(V, V ) = 1 and finding the minimizers, or at least a minimizing sequence.
It is easy to see that if M admits unit parallel vector fields, these should be exactly
the minimizers and so, volume and energy can be seen as a measure of how much the
vector field deviates from being parallel.

The geometrically simplest manifolds admitting unit vector fields but not parallel
ones are odd-dimensional round spheres, and Hopf vector fields on them are very
special unit vector fields. They are tangent to the fibres of the Hopf fibration π :
S2m+1 → CPm. When both manifolds are endowed with their usual metrics, this
map is a Riemannian submersion with totally geodesic fibres whose tangent space is
generated by the unit vector field V = JN , where N is the unit normal to the sphere
and J is the usual complex structure of R2m+2. It is usual to call also a Hopf vector
field any vector field obtained as the image of N by any complex structure; they can
be characterized as the unit Killing vector fields of the sphere.
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In [10], Gluck and Ziller showed that Hopf vector fields on the 3-dimensional round
sphere are the absolute minimizers of the volume and the analogous result for the
energy was shown by Brito in [3]. For spheres of higher dimension, they are unstable
critical points of the energy (see [14],[15],[8]) and critical points of the volume, which
is equivalent to define a minimal immersion in the unit tangent bundle, as has been
shown by the first author and E. Llinares-Fuster in [9].

The results quoted above are independent on the radius of the sphere. Nevertheless,
in what concerns the stability as critical points of the volume it has been shown, by
the first author with Llinares-Fuster ([8]) and with Borrelli ([2]), that for m > 1 they
are unstable if and only if the curvature is lower than 2m − 3. The infimum of the
volume of unit vector fields (as well as the regularity and properties of minimizers)
shows to be a very sensitive geometrical invariant that enables us to detect a variation
of the metric by homotheties.

In order to better understand these phenomena we study in this paper the be-
haviour of the Hopf vector field with respect to the volume and the energy when we
consider another variation of the standard metric on the sphere, which is a little more
complicated but also very natural: the canonical variation of the Riemannian sub-
mersion given by the Hopf fibration. The metrics so constructed are known as Berger
metrics, they consist in a 1-parameter variation gµ for µ > 0. In the last section, we
will consider also the Lorentzian Berger metrics, i. e. when µ < 0. This paper is
organized as follows:

We devote section 2 to recall the definitions and to state the results we will need in
the sequel, as well as to show that for all µ 6= 0, the unit Hopf vector field V µ defines
a harmonic map V µ : (S2m+1, gλ) → (T 1S2m+1, gS

µ ) for all λ 6= 0 and consequently
it is a critical point for the generalized energy Egλ

. Moreover, V µ defines a minimal
immersion.

In section 3, we study the special case of the 3-dimensional sphere and we have
shown that the unit Hopf vector field on (S3, gµ) is the only absolute minimizer of the
energy, and of the volume, if and only if µ ≤ 1. For µ > 1, we will show that it is not
even a local minimum, since it is unstable.

So, the minimizing properties of Hopf vector fields on the round S3 can be extended
to Berger 3-spheres if µ ≤ 1, but not otherwise. It is worthwhile to recall here that
with these metrics, the sphere can be isometrically immersed as a geodesic sphere in
the complex projective space and that, in contrast, for µ > 1 it can be identified with
a geodesic sphere of the complex hyperbolic space.

For higher dimensional spheres, we have determined the values of µ for which the
Hopf vector field is stable as a critical point of the energy and as a critical point
of the volume. More precisely the Hopf vector field on (S2m+1, gµ), with m > 1, is
energy stable if and only if (2m − 2)µ2 ≤ 1 and it is volume stable if and only if
(2m− 2)µ3 − µ ≤ 1. This is done in section 5, by using the methods developed in [8]
and [2] for the round sphere and the various expressions of the Hessians computed in
section 4.

We have used the same ideas to study the subset E of R+ × R+ of pairs (µ, λ)
such that V µ is stable as a critical point of the generalized energy Egλ

. Although a
complete description of E is still an open question, we can show, for example, that if
(2m− 1)µ ≤ 2 then (µ, λ) ∈ E , for all λ > 0, and that if (2m− 1)µ > 2 and µ ≤ 3/2
then (µ, λ) ∈ E if and only if ((2m − 1)µ − 2)λ ≤ (µ − 1)2. As a consequence, Hopf
vector fields of the round sphere S2m+1, with m > 1, are unstable as critical points of
the generalized energy Egλ

, for all λ > 0.
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Section 6 is devoted to the study of the behaviour of Hopf vector fields on Lorentzian
Berger spheres with respect to energy and volume functionals. To obtain the corre-
sponding expressions for the Hessians is a straightforward question: one should only
pay attention to the timelike character of the Hopf vector field in these metrics. We
have shown that on (S2m+1, gµ), with µ < 0, if (2m − 2)µ2 < 1 the unit Hopf vector
field is an unstable critical point of the energy and if (2− 2m)µ3 +(4m− 4)µ2 +µ < 1
it is an unstable critical point of the volume. In contrast, neither the stability results
nor the minimizing properties for the 3-dimensional case have Lorentzian analogous;
in fact we have shown that on (S3, gµ), for all µ < 0, the unit Hopf vector field is
unstable. These kind of difficulties we met when trying to determine the stability are
not exclusive of Berger spheres and moreover, since on Lorentzian manifolds the en-
ergy of unit timelike vector fields is not bounded below, it is not natural to talk about
absolute minimizers. These facts led us to define in [7] a new functional on the space of
unit timelike vector fields of a Lorentz manifold, that we called spacelike energy, and
is given by the integral of the square norm of the projection of the covariant derivative
of the vector field onto its orthogonal complement. In [7] we have shown that Hopf
vector fields are stable critical points of the spacelike energy. We finish this paper by
showing that on any Lorentzian Berger 3-sphere, the Hopf vector field is, up to sign,
the only minimizer of the spacelike energy.

2 Definitions and first results

2.1 Energy and volume of vector fields.

Given a Riemannian manifold (M, g), the Sasaki metric gS on the tangent bundle TM
is defined, using g and its Levi-Civita connection ∇, as follows:

gS(ζ1, ζ2) = g(π∗ ◦ ζ1, π∗ ◦ ζ2) + g(κ ◦ ζ1, κ ◦ ζ2),

where π : TM → M is the projection and κ is the connection map of ∇. We will
consider also its restriction to the tangent sphere bundle, obtaining the Riemannian
manifold (T 1M, gS).

As in [6], for each metric g̃ on M we can define the generalized energy of the vector
field V , denoted Eg̃(V ), as the energy of the map V : (M, g̃) → (TM, gS) that is given
by

Eg̃(V ) =
1
2

∫

M

trL(g̃,V ) dvg̃,

where L(g̃,V ) is the endomorphism determined by V ∗gS(X, Y ) = g̃(L(g̃,V )(X), Y ).
This energy can also be written as

Eg̃(V ) =
1
2

∫

M

√
detPg̃ tr(P−1

g̃ ◦ LV ) dvg (2.1)

where Pg̃ and LV are defined by g̃(X, Y ) = g(Pg̃(X), Y ) and V ∗gS(X,Y ) = g(LV (X), Y ),
respectively. By the definition of the Sasaki metric, LV = Id+(∇V )t ◦ ∇V . In par-
ticular, for g̃ = g

Eg(V ) =
1
2

∫

M

trLV dvg =
n

2
vol(M, g) +

1
2

∫

M

‖∇V ‖2dvg. (2.2)

3



This functional is known as the energy and will be represented by E. Its relevant
part, B(V ) = 1

2

∫
M
‖∇V ‖2dvg, is known as the total bending of V and its restriction

to unit vector fields has been thorougly studied by Wiegmink in [14], (see also [15]).
On the other hand, the volume of a vector field V is defined as the volume of the

submanifold V (M) of (TM, gS). It is given by

F (V ) =
∫

M

√
det LV dvg. (2.3)

Since for g̃ = V ∗gS we have Pg̃ = LV , then (2.1) and (2.3) give

F (V ) =
2
n

EV ∗gS (V ).

The first variation of the generalized energy has been computed in [6]. It has also
been shown there that V is a critical point of F if and only if V is a critical point of
EV ∗gS and that, on a compact M , a critical vector field of any of these generalized
energies should be parallel. This is one of the reasons why it is usual to restrict the
functionals to the submanifold of unit vector fields and so, critical points are those
V which are stationary for variations consisting on unit vector fields, or equivalently
with variational field orthogonal to V .

For now on, we are going to consider the restriction of these functionals to the
submanifold of unit vector fields.

The following proposition shown in [6] generalizes the characterization of critical
points of the total bending in [14] and of the volume in [9].

Proposition 2.1. ([6]) Let (M, g) be a Riemannian manifold, a unit vector field V
is a critical point of Eg̃ if and only if

ω(V,g̃) (V ⊥) = {0},

with ω(V,g̃) = C1
1∇K(V,g̃) and K(V,g̃) =

√
det Pg̃ P−1

g̃ ◦ (∇V )t.

Remark 2.2. For a (1, 1)-tensor field K, if {Ei} is a g-orthonormal local frame, we
have

C1
1∇K(X) =

∑

i

g((∇EiK)X, Ei).

As a particular case of Proposition 2.1, for g̃ = g, a unit vector field V is a critical
point of the energy (or of the total bending) if and only if

ω(V,g)(V ⊥) = {0}, with ω(V,g) = C1
1∇(∇V )t.

Furthermore, if we put g̃ = V ∗gS , we obtain that critical points of the volume are
characterized by the condition

ωV (V ⊥) = {0}, where ωV = C1
1∇KV and KV =

√
detLV L−1

V ◦ (∇V )t.

In [9] it has been proved that a unit vector field is a critical point of F if and only
if it defines a minimal immersion in (T 1M, gS). Nevertheless, as it has been shown in
[6], for a critical point V of Eg̃ to determine a harmonic map of (M, g̃) in (T 1M, gS),
V has to satisfy the condition

∑

i

R((∇V )Ẽi, V, Ẽi) +
∑

i

(∇Ẽi
Ẽi − ∇̃Ẽi

Ẽi) = 0, (2.4)
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where {Ẽi} is a g̃-orthonormal frame and R represents the curvature operator of the
metric g, that is

R(X, Y, Z) = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z.

Theorem 2.3. ([8]) Let V be a unit vector field on the Riemannian manifold (M, g).
a) If V is a critical point of Eg̃, the Hessian of Eg̃ at V acting on A ∈ V ⊥ is given by

(HessEg̃)V (A) =
∫

M

‖A‖2ω(V,g̃) (V ) dvg +
∫

M

√
detPg̃ tr

(
P−1

g̃ ◦ (∇A)t ◦ ∇A
)
dvg.

b) If V is a critical point of the energy, the Hessian of E at V acting on A ∈ V ⊥ is
given by

(HessE)V (A) =
∫

M

‖A‖2ω(V,g)(V ) dvg +
∫

M

‖∇A‖2dvg.

c) For a unit vector field V defining a minimal immersion, the Hessian of F at V
acting on A ∈ V ⊥ is given by

(HessF )V (A) =
∫

M

‖A‖2ωV (V ) dvg +
∫

M

2√
detLV

σ2(KV ◦ ∇A)dvg

−
∫

M

tr
(
L−1

V ◦ (∇A)t ◦ ∇V ◦KV ◦ ∇A
)
dvg

+
∫

M

√
detLV tr

(
L−1

V ◦ (∇A)t ◦ ∇A
)
dvg,

where σ2 is the second elementary symmetric polynomial function. In particular,
σ2(KV ◦ ∇A) = 1/2(tr(KV ◦ ∇A))2 − tr(KV ◦ ∇A)2.

Remark 2.4. The Hessian of the volume at a vector field V defining a minimal immer-
sion can be simplified if V is assumed to be a Killing vector field. Using Lemma 9 of
[8] we obtain

(HessF )V (A) =
∫

M

‖A‖2ωV (V ) dvg +
∫

M

2√
det LV

σ2(KV ◦ ∇A)dvg

+
∫

M

√
detLV tr

(
L−1

V ◦ (∇A)t ◦ L−1
V ◦ ∇A

)
dvg. (2.5)

2.2 Berger spheres.

Hopf vector fields on odd-dimensional spheres are tangent to the fibres of the Hopf
fibration π : (S2m+1, g) → (CPm, g), where g is the usual metric of curvature 1 and g
is the Fubini-Study metric with sectional curvatures between 1 and 4. This map is a
Riemannian submersion with totally geodesic fibres whose tangent space is generated
by the unit vector field V = JN , where N is the unit outward normal to the sphere
and J is the usual complex structure of R2m+2; in other words, V (p) = ip.

The canonical variation of the submersion is the one-parameter family of metrics
(S2m+1, gµ), µ 6= 0, defined by

gµ|V ⊥ = g|V ⊥ , gµ(V, V ) = µg(V, V ), gµ(V, V ⊥) = 0, (2.6)
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where V ⊥ denotes the orthogonal with respect to metric g of the 1-dimensional dis-
tribution generated by V . When µ > 0 the new metric is Riemannian and if µ < 0
the metric is Lorentzian and V is timelike.

For all µ 6= 0, the map π : (S2m+1, gµ) → (CPm, g) is a semi-Riemannian submer-
sion with totally geodesic fibres. (S3, gµ), with µ > 0, is known as a Berger sphere.
We will use the same name for all dimensions and we will call V µ = 1√

|µ|V the Hopf

vector field. It is a unit Killing vector field with geodesic flow.
We denote by ∇̄ the Levi-Civita connection on R2m+2. The Levi-Civita connection

∇ on (S2m+1, g) is ∇XY = ∇̄XY− < ∇̄XY, N > N and ∇̄XV = J∇̄XN = JX.
Therefore ∇V V = 0 and if < X, V >= 0 then ∇XV = JX.

Using Koszul formula, one obtains the relation of ∇µ, the Levi-Civita connection
of the metric gµ, with ∇

∇µ
V X = ∇V X + (µ− 1)∇XV, ∇µ

XV = µ∇XV, ∇µ
XY = ∇XY, (2.7)

for all X,Y in V ⊥.
By straightforward computations it can be seen that the sectional curvature Kµ

of (S2m+1, gµ) takes the value

Kµ(σ) = 1 + (1− µ)g(X, JY )2,

if σ ⊂ V ⊥ and {X, Y } is an orthonormal basis and it takes the value Kµ(σ) = µ, if
the plane σ contains de vector V µ. Consequently, the Ricci tensor has the form

Ricµ(V µ, V µ) = 2m|µ|, Ricµ(X, V µ) = 0,

(2.8)
Ricµ(X, Y ) = 2(1− µ + m)g(X,Y ),

for all X,Y in V ⊥, and the scalar curvature is given by

Sµ = 2m(2 + 2m− µ).

It has been shown in [6] that, for all λ > 0, the map V : (S2m+1, gλ) → (T 1(S2m+1), gS)
is harmonic. More generally we have

Proposition 2.5. For all µ, λ 6= 0, the map V µ : (S2m+1, gλ) → (T 1(S2m+1), gS
µ ) is

harmonic.

Proof. According to Proposition 2.1 and condition (2.4), we need to show that

ω(V µ,gλ)(X) = 0 for all X ∈ V ⊥ (2.9)

and ∑

i

Rµ((∇µV µ)Ẽi, V
µ, Ẽi) +

∑

i

(∇µ

Ẽi
Ẽi −∇λ

Ẽi
Ẽi) = 0, (2.10)

where {Ẽi} is a gλ-orthonormal frame with Ẽ2m+1 = V λ.
Using (2.7), for i = 1, . . . 2m, we have

∇µ

Ẽi
Ẽi −∇λ

Ẽi
Ẽi = 0
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and it is easy to see that Rµ(X, V µ, Y ) = µg(X, Y )V µ, for all X, Y ∈ V ⊥, and then

Rµ((∇µV µ)Ẽi, V
µ, Ẽi) = µg((∇µV µ)Ẽi, Ẽi)V µ = 0.

For the last equality we use that V µ is a Killling vector field. Since it is also geodesic
we get (2.10).

The endomorphism Pgλ
relating the metrics gµ and gλ is the identity on V ⊥ and

Pgλ
(V ) = (λ/µ)V . On the other hand, for X ∈ V ⊥,

(∇µV µ)(X) =
µ√
|µ| JX.

Then K(V µ,gλ)(V µ) = 0 and

K(V µ,gλ)(X) = − µ

|µ|
√
|λ| JX.

Therefore, when either Y ∈ V ⊥ or Y = V ,

(∇µ
Y K(V µ,gλ))X =

µ

|µ|
√
|λ| g(X, Y )V,

and then
gµ((∇µ

Y K(V µ,gλ))X,Y ) = 0,

from where we get (2.9).

Since (V µ)∗gS
µ = (1 + |µ|)gλ where λ = µ/(1 + |µ|), as a consequence of the

Proposition above, we have the following

Corollary 2.6. For all µ 6= 0, the Hopf vector field V µ is a critical point of the
generalized energy Egλ

, for all λ 6= 0, and it defines a minimal immersion.

Remark 2.7. Although we have stated Proposition 2.1 and condition (2.4) only for
Riemannian metrics, it is easy to see that for Lorentzian metrics, the analogous result
also holds, up to the sign of the terms involving V λ, which does not appear in this
case because V λ is geodesic.

Let us end this section by the description of the holomorphic and anti-holomorphic
derivatives. Since a vector field on S2m+1 can be seen as a map on Cm+1, apart from
the covariant derivatives ∇µ we will use other differential operators that take into
account the complex structure. Although it turns out that these operators are inde-
pendent of µ, and so the description is identical to the corresponding one in [2], we
find it convenient to reproduce it here.

Let W : U ⊂ Cm+1 → Cm+1 be a vector field. We put DCXW = ∇̄JXW −J∇̄XW and
D̄CXW = ∇̄JXW + J∇̄XW. Recall that W is holomorphic (resp.anti-holomorphic) if
for all X, DCXW = 0 (resp. D̄CXW = 0).

Let V ⊥ be the distribution Span(x, Jx)⊥ on Cm+1 \{0} and π : T (Cm+1 \{0}) → V ⊥

be the natural projections {x}×Cm+1 → V ⊥
x . We denote by ‖π ◦DCW‖V ⊥ the norm

of π ◦DCW|V ⊥ : V ⊥ → V ⊥ that is :

‖π ◦DCW‖2V ⊥ =
2m∑

i=1

‖π ◦DCEi
W‖2
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where E1, ..., E2m is a local orthonormal frame of V ⊥. Similarly :

‖π ◦ D̄CW‖2V ⊥ =
2m∑

i=1

‖π ◦ D̄CEi
W‖2,

but in that case
π ◦ D̄CW|V ⊥ = D̄CW|V ⊥ : V ⊥ → V ⊥

so that :
‖π ◦ D̄CW‖2V ⊥ = ‖D̄CW‖2V ⊥ .

We compute ‖π ◦DCA‖2V ⊥ and ‖D̄CA‖2V ⊥ in terms of the matrix B of ∇A in a local
frame, i. e. Bj

i =< ∇Ei
A,Ej >, obtaining :

1
2
‖π ◦DCA‖2V ⊥ =

m∑

i,j=1

(Bj∗
i∗ −Bj

i )
2 + (Bj

i∗ + Bj∗
i )2 (2.11)

=
2m∑

i,j=1

(Bj
i )

2 + 2
m∑

i,j=1

(Bj
i∗B

j∗
i −Bj∗

i∗Bj
i ),

and

1
2
‖D̄CA‖2V ⊥ =

m∑

i,j=1

(Bj∗
i∗ + Bj

i )
2 + (Bj

i∗ −Bj∗
i )2 (2.12)

=
2m∑

i,j=1

(Bj
i )

2 − 2
m∑

i,j=1

(Bj
i∗B

j∗
i −Bj∗

i∗Bj
i ).

In the sequel, when not otherwise stated, we will assume that the parameters µ and
λ are positive; the study of Lorentzian Berger metrics will be performed in last section.

3 The special case of S3

The aim of this section is to show that the unit Hopf vector field on (S3, gµ) is the
only absolute minimizer of the energy, and of the volume, if and only if µ ≤ 1. For
µ > 1, we will show that it is not even a local minimum.

Since S3 ⊂ R4 = H, we can define on S3 a global g-orthonormal frame {V =
J0N,E1 = J1N, E2 = J2N} where {J0, J1, J2} denote the three standard complex
structures defining the quaternionic structure of R4. Then {V µ, E1, E2} is a gµ-
orthonormal frame.

Lemma 3.1. Let X be a unit vector field which is an element of the 2-dimensional
space generated by {E1, E2} and let W be of the form W = cos(t)V µ + sin(t)X, then:

‖∇µW‖2 = 2µ + 4 sin2(t)
1− µ

µ
.

In particular, ‖∇µX‖2 = 2µ + 4 1−µ
µ and ‖∇µV µ‖2 = 2µ. Moreover
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detLW = (1 + µ)2 + 4 sin2(t)(1 + µ)
1− µ

µ
.

In particular detLX = (1 + µ)2 + 4(1 + µ) 1−µ
µ and detLV µ = (1 + µ)2.

Proof. Since,

∇V V = ∇E1E1 = ∇E2E2 = 0 ∇E1E2 = −∇E2E1 = −V

∇V E1 = −∇E1V = −E2 ∇E2V = −∇V E2 = −E1,

then, using (2.7)

∇µ
V µV µ = ∇µ

E1
E1 = ∇µ

E2
E2 = 0 ∇µ

E1
E2 = −∇µ

E2
E1 = −√µ V µ

∇µ
V µE1 =

µ− 2√
µ

E2 ∇µ
E1

V µ =
√

µ E2

∇µ
V µE2 = −µ− 2√

µ
E1 ∇µ

E2
V µ = −√µ E1.

For a unit vector field X = a1E1 + a2E2 with ai ∈ C∞(S3), if we take Y =
−a2E1 + a1E2, then

∇µ
XX = X(a1)E1 + X(a2)E2,

∇µ
V µX = V µ(a1)E1 + V µ(a2)E2 +

µ− 2√
µ

Y, (3.1)

∇µ
Y X = Y (a1)E1 + Y (a2)E2 +

√
µ V µ.

If we assume that the functions a1 and a2 are constant then

∇µ
XX = 0, ∇µ

V µX =
µ− 2√

µ
Y and ∇µ

Y X =
√

µ V µ.

Therefore if W = cos(t)V µ + sin(t)X, since ∇µW = cos(t)∇µV µ + sin(t)∇µX, it is
not difficult to see that

LW (X) = (1 + µ cos2(t))X + (µ− 2) sin(t) cos(t)V µ

LW (V µ) = (µ− 2) sin(t) cos(t)X +
(
1 + sin2(t)

(µ− 2)2

µ

)
V µ,

LW (Y ) = (1 + µ)Y,

from where
trLW = 3 + ‖∇µW‖2 = 3 + 2µ + 4 sin2(t)

1− µ

µ
,

and
detLW = (1 + µ)2 + 4 sin2(t)(1 + µ)

1− µ

µ
.

9



For µ = 1, all the elements of the unit sphere of the 3-dimensional vector space
generated by {V µ, E1, E2} are also called Hopf vector fields, they can be characterized
as the unit Killing vector fields. It is known ([3] and [10]) that Hopf vector fields have
all the same volume and the same energy and that they are the only minimizers of
both functionals. For µ 6= 1, the situation is quite different as it will be described in
the next result.

Theorem 3.2. Let (S3, gµ) be the three-dimensional Berger sphere.
a) If µ < 1, V µ is, up to sign, the only minimizer of the energy and of the volume

of unit vector fields; the minima of the functionals are E(V µ) = ( 3
2 + µ)vol(S3, gµ)

and F (V µ) = (1 + µ)vol(S3, gµ),respectively.
b) If µ > 1, for all unit vector fields A in the 2-dimensional space generated by

{E1, E2} we have

E(A) = (
3
2

+ µ + 2
1− µ

µ
)vol(S3, gµ) < E(V µ)

and

F (A) =
√

(1 + µ)2 + 4(1 + µ)
1− µ

µ
vol(S3, gµ) < F (V µ).

In fact V µ is not even a local minimum. Moreover, for all unit vector field X

E(X) >
(7

2
− µ

)
vol(S3, gµ) and F (X) > (3− µ)vol(S3, gµ).

Proof. For any three dimensional compact manifold, the energy and the volume of
unit vector fields are related with the integral of the Ricci tensor, as it has been shown
in [3]. In this particular case the inequalities are written as

E(X) ≥ 3
2vol(S3, gµ) + 1

2

∫
S3 Ricµ(X, X)dvµ,

(3.2)
F (X) ≥ vol(S3, gµ) + 1

2

∫
S3 Ricµ(X, X)dvµ.

In both cases, the equality holds if and only if ∇µ
XX = 0, h11 = h22 and h12 = −h21,

where hij = gµ(∇µ

Ei
X, Ej) and {X, E1, E2} is a gµ-orthonormal frame.

Using 2.8 we have that if µ < 1, then

Ricµ(X, X) ≥ Ricµ(V µ, V µ) = 2µ

for all unit X, with equality if and only if X = ±V µ and therefore E(X) ≥ E(V µ)
and F (X) ≥ F (V µ). Hopf vector field is then, up to sign, the only minimizer and we
have shown a).

The first sentence of b) is a direct consequence of Lemma 3.1. To see that, for
µ > 1, the Hopf vector field is not a local minimum, we only need to consider the curve
of unit vector fields W (t) = cos(t)V µ + sin(t)A where A = a1E1 + a2E2,with ai ∈ R,
is a unit vector field. In Lemma 3.1 we have computed the value of the functions
E(t) = E(W (t)) and F (t) = F (W (t)) from where we observe that for t = 0 both
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functions reach their maximum.
On the other hand, 2.8 gives us that if µ > 1 then

Ricµ(X, X) ≥ Ricµ(A,A) = 2(2− µ),

for all unit X and all unit A ∈ V ⊥, with equality if and only if X ∈ V ⊥. Consequently,
if we use (3.2)

E(X) ≥
(7

2
− µ

)
vol(S3, gµ) and F (X) ≥ (3− µ)vol(S3, gµ), (3.3)

with equality if and only if X ∈ V ⊥, ∇µ
XX = 0, h11 = h22 and h12 = −h21.

Let us assume that a unit vector field X satisfies the four conditions above. Firstly
X = a1E1 + a2E2 with ai ∈ C∞(S3) and if we take Y = −a2E1 + a1E2 then by (3.1)
the other three conditions become

X(a1) = X(a2) = 0, (3.4)
−a2Y (a1) + a1Y (a2) = 0, (3.5)

a2V
µ(a1)− a1V

µ(a2) =
2µ− 2√

µ
. (3.6)

If a2 vanishes identically, then a1 should be constant and (3.6) give us a contradiction.
So, the open set where a2 6= 0 is not empty and (3.4) and (3.5) then imply that on it
we have

X
(a1

a2

)
= Y

(a1

a2

)
= 0.

But, by the choice of X and Y , this is equivalent to

E1

(a1

a2

)
= E2

(a1

a2

)
= 0,

that, using the relation between V µ and [E1, E2], implies V µ(a1/a2) = 0, which is
again in contradiction with (3.6). Therefore, the lower bounds in (3.3) are never
reached.

Remark 3.3. 1.– Since on any 3-dimensional manifold, the functional E (resp. F ) is
bounded below by 3

2 times the volume (resp. by the volume) of the manifold, the
lower bounds appearing in the Theorem above are relevant only for µ < 2.

2.– Part a) of the Theorem is a particular case of a result of [11] concerning unit
Killing vector fields on a 3-dimensional compact manifold.

A relation between the energy and the integral of the Ricci tensor similar to the
one quoted in (3.2) is valid for any compact manifold (see [3]) and then we have ,

Proposition 3.4. For all unit vector field X on (S2m+1, gµ),

E(X) ≥ 2m + 1
2

vol(S2m+1, gµ) +
1

2(2m− 1)

∫

S2m+1
Ricµ(X,X)dvµ,

with equality if and only if ∇µ
XX = 0, and the distribution X⊥ determines a foliation

with umbilical leaves.

11



Since Ricµ(V µ, V µ) = 2mµ and Ricµ(A,A) = 2(1− µ + m) ‖A‖2 for all A ∈ V ⊥,
if µ < 1

E(X) ≥
(2m + 1

2
+

mµ

2m− 1

)
vol(S2m+1, gµ).

Moreover, if m 6= 1, equality never holds because this will imply X = V µ and

E(V µ) =
2m + 1 + 2mµ

2
vol(S2m+1, gµ).

If µ > 1 then

E(X) ≥
(2m + 1

2
+

1− µ + m

2m− 1

)
vol(S2m+1, gµ),

with equality if and only if X ∈ V ⊥, ∇µ
XX = 0, and the distribution X⊥ determines

a foliation with umbilical leaves. As for the 3-dimensional sphere, this lower bound is
relevant for 1 < µ < m + 1.

In the case of the round sphere, µ = 1, the bound ( 2m+1
2 + m

2m−1 )vol(S2m+1) is
the value of the energy of radial vector fields defined on the complementary of two
antipodal points. Moreover, it has been shown in [1] that it is the infimum of the
energy. In contrast with this situation, for µ > 1 we do not know if any unit vector
field exists, having this energy, even if we allow singularities.

In what concerns the volume, the difference between the case µ = 1 and the general
one is deeper. In fact, it has been shown in [4] that for the round spheres the volume
of radial vector fields is also a lower bound of F but the proof is based on an inequality
relating the volume of a unit vector field with the curvature of the manifold that is
only valid for constant curvature spaces.

4 Second variation of the generalized energy and of
the volume at Hopf vector fields

For fixed µ 6= 0, V µ is a critical point of E and F and also it is a critical point of
Egλ

, for all λ 6= 0. Then we can compute the Hessians of these functionals at V µ. For
simplicity we give the proof only for positive values of the parameter.

Proposition 4.1. Let V µ be the Hopf unit vector field on (S2m+1, gµ), for each vector
field A orthogonal to V µ we have:

a)(HessEgλ
)V µ(A) =

∫

S2m+1

(
− 2m

√
λµ ‖A‖2 +

√
λ/µ ‖∇µA‖2

+ (
√

µ/λ−
√

λ/µ ) ‖∇µ
V µA‖2

)
dvµ.

b) (HessE)V µ(A) =
∫

S2m+1

(
− 2mµ‖A‖2 + ‖∇µA‖2

)
dvµ.

c) (HessF )V µ(A) = (1 + µ)m−2

∫

S2m+1

(
µ(−2mµ + 2(1− µ))‖A‖2 + ‖∇µA‖2

+ µ‖∇µ
V µA +

√
µJA‖2

)
dvµ.
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Proof. We only need to compute the elements appearing in Theorem 2.3 for this
particular case. Since Lgλ

=
√

λ/µ(g−1
λ gµ) and ∇µV µ =

√
µJ , by direct computation

we obtain

ω(V µ,gλ)(V µ) = −2m
√

λµ,

and

tr(Lgλ
◦ (∇µA)t ◦ (∇µA)) =

√
λ/µ

2m∑

i=1

gµ(∇µ
Ei

A,∇µ
Ei

A) +
√

λ/µgµ(∇µ
V λA,∇µ

V λA)

=
√

λ/µ

2m∑

i=1

gµ(∇µ
Ei

A,∇µ
Ei

A) +
√

µ/λgµ(∇µ
V µA,∇µ

V µA),

from where a) and b) hold.

Since ∇µV µ =
√

µJ , on (V µ)⊥ and V µ is geodesic, we have that LV µ(V µ) = V µ

and LV µ = (1 + µ)Id on (V µ)⊥. Then, f(V µ) = (1 + µ)m and KV µ = −(1 +
µ)m−1∇µV µ. By direct computation we obtain

ωV µ(V µ) = −2mµ(1 + µ)m−1,

and
(KV µ ◦ ∇µA)(X) = −√µ(1 + µ)m−1(∇µ

XJA + g(X, A)V ),

from where
2

f(V λ)
σ2(KV µ ◦ ∇µA) = 2µ(1 + µ)m−2

(
σ2(∇µJA)−√µg(∇µ

V µJA, A)
)
.

Using the fact that, on any Riemannian manifold, 2σ2(∇X) and Ric(X, X) differ
in a divergence ( see for example [13], p. 170) and the value of the Ricci tensor of gµ

(2.8) we have
∫

S2m+1

1
f(V λ)

σ2(KV µ ◦ ∇µA)dvµ

= µ(1 + µ)m−2

∫

S2m+1

(
(m− µ + 1)‖A‖2 −√µg(∇µ

V µJA, A)
)
dvµ.

Finally,

tr(L−1
V µ ◦ (∇µA)t ◦ L−1

V µ ◦ ∇µA) = (1 + µ)−2
2m∑

i,j=1

gµ(∇µ
Ei

A,Ej)2

+(1 + µ)−1(µ‖JA‖2 + ‖∇µ
V µA‖2)

= (1 + µ)−2
(
‖∇µA‖2 + µ2‖JA‖2 + µ‖∇µ

V µA‖2
)
.

For the last equality we have used that

‖∇µA‖2 =
2m∑

i,j=1

gµ(∇µ
Ei

A,Ej)2 + µ‖JA‖2 + ‖∇µ
V µA‖2.

Since V µ is a Killing vector field, we can use (2.5) to compute the Hessian and then
we get c).
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In order to study the stability of the Hopf vector field it will be useful to find new
expressions of the Hessians. We will proceed following closely the arguments used in
[2], for the volume functional in the case of the round spheres. There, the key was to
relate the integral of ‖∇A‖2 with the integral of ‖π ◦DCA‖2V ⊥ and that of ‖DC

A‖2V ⊥ .

Firstly, since

m∑

i,j=1

(Bj
i∗B

j∗
i −Bj∗

i∗Bj
i ) = −

m∑

i=1

gµ(∇µ
JEi

A, J∇µ
Ei

A),

(2.11) and (2.12) can be written as

‖∇µA‖2 =
1
2
‖π ◦DCA‖2V ⊥ + ‖∇µ

V µA‖2 + µ‖A‖2 + 2
m∑

i=1

gµ(∇µ
JEi

A, J∇µ
Ei

A),

‖∇µA‖2 =
1
2
‖DC

A‖2V ⊥ + ‖∇µ
V µA‖2 + µ‖A‖2 − 2

m∑

i=1

gµ(∇µ
JEi

A, J∇µ
Ei

A).

The second step is the following lemma, the proof of which is very similar to the
corresponding one in [2] and will be omitted

Lemma 4.2. For all µ 6= 0 we have

a) 2m
√
|µ|V µ = −

m∑

i=1

[Ei, JEi] +
m∑

i=1

divµ(JEi)Ei −
m∑

i=1

divµ(Ei)JEi,

and

b) m
√
|µ|

∫

S2m+1
gµ(∇µ

V µA, JA)dvµ = (mµ−m− 1)
∫

S2m+1
‖A‖2dvµ

+
∫

S2m+1

m∑

i=1

gµ(∇µ
JEi

A, J∇µ
Ei

A)dvµ.

Now, as a consequence, we have

Lemma 4.3. For all µ > 0,

a)
∫

S2m+1
‖∇µA‖2dvµ =

∫

S2m+1

(1
2
‖π ◦DCA‖2V ⊥ + ‖∇µ

V µA‖2 + (2 + µ + 2m(1− µ))‖A‖2

+2m
√

µ gµ(∇µ
V µA, JA)

)
dvµ

b)
∫

S2m+1
‖∇µA‖2dvµ =

∫

S2m+1

(1
2
‖DC

A‖2V ⊥ + ‖∇µ
V µA‖2 + (µ− 2 + 2m(µ− 1))‖A‖2

−2m
√

µ gµ(∇µ
V µA, JA)

)
dvµ.

If we use these values on the corresponding expressions of Proposition 4.1, we
obtain
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Proposition 4.4. Let V µ be the Hopf unit vector field on (S2m+1, gµ), for each vector
field A orthogonal to V µ we have:

a1)(HessEgλ
)V µ(A) =

∫

S2m+1

(
(
√

λµ(1− 4m) +
√

λ/µ(2m + 2− λm2)) ‖A‖2

+
√

µ/λ ‖∇µ
V µA +

λm√
µ

JA‖2 +
1
2

√
λ/µ ‖π ◦DCA‖2V ⊥

)
dvµ.

a2)(HessEgλ
)V µ(A) =

∫

S2m+1

(
(
√

λµ−
√

λ/µ(2m + 2 + λm2)) ‖A‖2

+
√

µ/λ ‖∇µ
V µA− λm√

µ
JA‖2 +

1
2

√
λ/µ ‖DC

A‖2V ⊥
)
dvµ.

b1) (HessE)V µ(A) =
∫

S2m+1

(
(2m + 2− µ(m2 + 4m− 1)) ‖A‖2

+ ‖∇µ
V µA + m

√
µJA‖2 +

1
2
‖π ◦DCA‖2V ⊥

)
dvµ.

b2) (HessE)V µ(A) =
∫

S2m+1

(
(−2m− 2− µ(m2 − 1)) ‖A‖2

+ ‖∇µ
V µA−m

√
µJA‖2 +

1
2
‖DC

A‖2V ⊥
)
dvµ.

c1) (HessF )V µ(A) = (1 + µ)m−2

∫

S2m+1

(
f1(m,µ) ‖A‖2

+ (1 + µ) ‖∇µ
V µA +

√
µ(m + µ)
1 + µ

JA‖2 +
1
2
‖π ◦DCA‖2V ⊥

)
dvµ.

c2) (HessF )V µ(A) = (1 + µ)m−2

∫

S2m+1

(
f2(m,µ) ‖A‖2

+ (1 + µ) ‖∇µ
V µA +

√
µ(µ−m)
1 + µ

JA‖2 +
1
2
‖DC

A‖2V ⊥
)
dvµ.

where

f1(m,µ) = µ(3− µ− 2m− 2mµ) + (2m + 2)− µ(m + µ)2

1 + µ

and

f2(m, µ) = µ(3− µ + 2m− 2mµ)− (2m + 2)− µ(µ−m)2

1 + µ
.

5 Stability of Hopf vector fields on S2m+1 with m > 1

The instability results for the round spheres have been obtained by showing that the
Hessian is negative when acting on the vector fields Aa = a − 〈a, V 〉V − 〈a,N〉N =
a − f̄aV − faN for all a ∈ R2m+2, a 6= 0. A geometrical description of these vector
fields can be seen in [8], as well as the following

Lemma 5.1.
∫

S2m+1
f̄2

adv =
∫

S2m+1
f2

adv =
|a|2

2m + 2
vol(S2m+1)
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If we use Proposition 4.1 to compute the value of the Hessian acting on these
particular vector fields we obtain

Lemma 5.2. Let V µ be the Hopf unit vector field on (S2m+1, gµ). For each a ∈
R2m+2, a 6= 0 we have:

a)(HessEgλ
)V µ(Aa) =

√
λm

m + 1
|a|2

(
(1− 2m)µ + 2 +

(µ− 1)2

λ

)
vol(S2m+1).

b) (HessE)V µ(Aa) =
√

µm

m + 1
|a|2

(
(1− 2m)µ + 2 +

(µ− 1)2

µ

)
vol(S2m+1).

c) (HessF )V µ(Aa) = (1 + µ)m−2

√
µm

m + 1
|a|2f(m,µ)vol(S2m+1).

where f(m,µ) =
(
(1− 2m)µ(1 + µ) + 2mµ + 2 + (1 + µ) (µ−1)2

µ

)
.

Proof. We need to compute all the elements appearing in the formulae given in Propo-
sition 4.1. Since Aa is orthogonal to V we have, as in the case µ = 1 computed in
[8],

‖A‖2 = |a|2 − f̄2
a − f2

a and
2m∑

i,j=1

(Bj
i )

2 = 2m(f̄2
a + f2

a ).

But now

∇µ
V µA = −µ− 1√

µ

m∑

j=1

(Ej(f̄a)Ej + Ej∗(f̄a)Ej∗),

and then

‖∇µ
V µA‖2 =

(µ− 1)2

µ

m∑

j=1

((Ej(f̄a))2 + (Ej∗(f̄a))2) =
(µ− 1)2

µ
(|a|2 − f̄2

a − f2
a ),

g(∇µ
V µA, JA) =

µ− 1√
µ

(|a|2 − f̄2
a − f2

a ).

The integrands of the Hessians are obtained by straightforward computation and then
we use Lemma 5.1 to conclude.

It is an immediate consequence of a) that, if m > 1, Hopf vector fields of the round
sphere are unstable when considered as critical points of all the energy functionals
Egλ

, thus generalizing the corresponding result for the usual energy. But Lemma 5.2
give us the instability of V µ in many other cases, that we summarize in

Proposition 5.3. Let V µ be the Hopf unit vector field on (S2m+1, gµ) with m > 1,

a) If (2m − 1)µ > 2, and ((2m − 1)µ − 2)λ > (µ − 1)2, then V µ is an unstable
critical point of the energy Egλ

.

b) If (2m− 2)µ2 > 1, then V µ is energy unstable.

c) If (2m− 2)µ3 − µ > 1, then V µ is volume unstable.

In all cases the index is at least 2m + 2.
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Proof. To show b) and c) we only need to use Lemma 5.2 to write, respectively, the
conditions

(HessE)V µ(Aa) < 0 and (HessF )V µ(Aa) < 0.

Analogously, from a) of Lemma 5.2, we obtain that

(HessEgλ
)V µ(Aa) < 0

if (1− 2m)µ + 2 + (µ−1)2

λ < 0, which is equivalent to the condition stated in a).

We are going to show that in what concerns volume and energy the sufficient con-
dition for instability is also necessary. For the other functionals the situation is more
complicated and is still open for some values of (µ, λ).

In order to obtain the stability results, it is convenient to see a vector field A on
S2m+1, orthogonal to the Hopf vector field, as a map A : S2m+1 −→ V ⊥ ⊂ Cm+1

where V ⊥ represents the distribution V ⊥
x = Span{x, Jx}⊥. For such a map A, we

write

Al(p) =
1
2π

∫ 2π

0

A(eiθp)e−ilθdθ ∈ V ⊥
p

so that
A(p) =

∑

l∈Z

Al(p)

is the Fourier series of A. Since Al(eiθp) = eilθAl(p) then

∇V A = ∇̄V A =
∑

l∈Z

ilAl =
∑

l∈Z

lJAl

and
‖∇µ

V µAl + αJAl‖2 =
1
µ

(l − 1 + µ + α
√

µ)2 ‖Al‖2.

If C(p) denotes the fibre of the Hopf fibration π : S2m+1 −→ CPm passing through p,
and for l 6= q,

∫

C(p)

< Al, Aq >= 0.

By the construction of the Berger metrics, this fact is independent of µ and so, the
essential following Lemma, shown in [2] for the volume functional in the case µ = 1,
remains valid

Lemma 5.4.

a)(HessEgλ
)V µ(A) =

∑

l∈Z

(HessEgλ
)V µ(Al).

b) (HessE)V µ(A) =
∑

l∈Z

(HessE)V µ(Al).

c) (HessF )V µ(A) =
∑

l∈Z

(HessF )V µ(Al).
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We can now show the following

Theorem 5.5. On (S2m+1, gµ), with m > 1, the Hopf unit vector field V µ is stable
as a critical point of the energy if and only if (2m − 2)µ2 ≤ 1 and it is stable as a
critical point of the volume if and only if (2m− 2)µ3 − µ ≤ 1.

Proof. We only need to show that under the hypothesis on µ, the corresponding Hes-
sians are non negative, when acting on any vector field A orthogonal to V µ.

By Proposition 4.4 part b1),

(HessE)V µ(Al) ≥ e1(m,µ, l)
∫

S2m+1
‖Al‖2dvµ,

with

e1(m, µ, l) = µ(1−m2−4m)+2m+2+
1
µ

(l−1+µ(m+1))2 = µ(2−2m)+2l(m+1)+
1
µ

(l−1)2.

Therefore, if (2m− 2)µ2 ≤ 1,

e1(m,µ, l) ≥ 2l(m + 1) +
√

2m− 2((l − 1)2 − 1).

Consequently, (HessE)V µ(Al) ≥ 0 for all l ≥ 0. If we use now Proposition 4.4 part
b2),

(HessE)V µ(Al) ≥ e2(m,µ, l)
∫

S2m+1
‖Al‖2dvµ,

with

e2(m, µ, l) = µ(1−m2)−2m−2+
1
µ

(l−1+µ(1−m))2 = µ(2−2m)+2l(1−m)−4+
1
µ

(l−1)2.

If we assume again (2m− 2)µ2 ≤ 1, we obtain

e2(m,µ, l) ≥ 2l(1−m)− 4 +
√

2m− 2((l − 1)2 − 1).

Since
√

2m− 2((l − 1)2 − 1) ≥ 4, for all l < 0, we have (HessE)V µ(Al) ≥ 0.
Lemma 5.4 part b) gives us that V µ is energy stable. The corresponding result for
the volume can be established in a similar way.
By Proposition 4.4 part c1),

(HessF )V µ(Al) ≥ (1 + µ)m−2f1(m, µ, l)
∫

S2m+1
‖Al‖2dvµ,

with

f1(m, µ, l) = f1(m,µ) +
(1 + µ)

µ

(
l − 1 + µ +

µ(m + µ)
1 + µ

)2

.

Developing the righthand side, we have

f1(m,µ, l) = µ2(2− 2m) + µ4l + 2l(m + 1) + (l − 1)2 +
1
µ

(l − 1)2.

In particular, µf1(m,µ, 0) = µ3(2− 2m)+µ+1 and the condition (2m− 2)µ3−µ ≤ 1
then implies that (HessF )V µ(A0) ≥ 0.
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Let us point out that if µ verifies the condition above, then it should also verify
µ ≤ 1 and then for l ≥ 1 we have f1(m,µ, l) > (2 − 2m) + 2(m + 1) and then
(HessF )V µ(Al) > 0.
Let us use now Proposition part c2),

(HessF )V µ(Al) ≥ (1 + µ)m−2f2(m, µ, l)
∫

S2m+1
‖Al‖2dvµ,

with

f2(m, µ, l) = f2(m,µ) +
(1 + µ)

µ

(
l − 1 + µ +

µ(µ−m)
1 + µ

)2

.

Developing the righthand side, we have

f2(m,µ, l) = µ2(2− 2m) + µ4l + l2 − 3− 2ml +
1
µ

(l − 1)2.

So, under the hypothesis, f2(m,µ, l) ≥ −1 + µ4l + l2 − 3 − 2ml + 1
µ (l2 − 2l) and,

since µ ≤ 1 , for all l < 0 we have f2(m,µ, l) ≥ 2l + 2l2 − 4 − 2ml ≥ 0 and then
(HessF )V µ(Al) ≥ 0.

For the generalized energy we can use the same arguments to obtain the stability
on Hopf vector fields under some conditions.

Proposition 5.6. On (S2m+1, gµ), with m > 1, the Hopf unit vector field V µ is stable
as a critical point of the energy Egλ

in the following cases:

a) If (2m− 1)µ ≤ 2, for all λ > 0.

b) If 2
2m−1 < µ ≤ 3

2 , for λ ≤ (µ−1)2

(2m−1)µ−2 .

c) If µ ≥ 2m + 2, for λ ≤ µ−2m−2
m2 .

d) If m > 2 and 3
2 < µ, for λ such that 2µ−3

2m−4 ≤ λ ≤ (µ−1)2

(2m−1)µ−2 .

Proof. Let us show that under the hypothesis, the corresponding Hessian is non neg-
ative, when acting on any vector field A orthogonal to V µ.

That this is the case for (µ, λ) as in c) is a direct consequence of Proposition 4.4
part a2). If we use instead part a1),

(HessEgλ
)V µ(Al) ≥ e1(m, µ, λ, l)

√
λ/µ

∫

S2m+1
‖Al‖2dvµ,

with
e1(m, µ, λ, l) = µ(1− 4m) + 2m + 2− λm2 +

1
λ

(l − 1 + µ + λm)2.

In particular, if we assume a), b) or d)

e1(m, µ, λ, 0) =
(µ− 1)2

λ
+ µ(1− 2m) + 2 ≥ 0.

Moreover

e1(m,µ, λ, l) = e1(m,µ, λ, 0) +
1
λ

(l2 + 2l(−1 + µ + λm)) ≥ 0,
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provided l > 1 or l = 1 and µ ≥ 1. But

e1(m,µ, λ, 1) =
µ2

λ
+ µ + 2 + 2m(1− µ) ≥ 0,

when µ ≤ 1. Consequently, (HessEgλ
)V µ(Al) ≥ 0 for all l ≥ 0. If we use now

Proposition 4.4 part a2),

(HessEgλ
)V µ(Al) ≥ e2(m, µ, λ, l)

√
λ/µ

∫

S2m+1
‖Al‖2dvµ,

with
e2(m, µ, λ, l) = µ− (2m + 2 + λm2) +

1
λ

(l − 1 + µ− λm)2.

Under the hypothesis a) b) or d),

e2(m,µ, λ, l) ≥ −4− 2lm +
1
λ

(l2 − 2l + 2lµ).

Therefore, if µ ≤ 3/2, then e2(m,µ, λ, l) ≥ 0 for all l < 0.

We get the same result if we assume that m > 2 and λ ≥ 2µ−3
2m−4 , since

2µ− 3
2m− 4

≥ −2lµ− l2 + 2l

−2lm− 4
,

for all l ≤ −1. Lemma 5.4 part a) gives us that V µ is stable.

The proposition above, jointly with Proposition 5.3, solves completely the problem
of the stability of Hopf vector fields as critical points of the generalized energy for
µ ≤ 3/2. For other values of µ we have only a partial answer. It is also worthwhile
to point out that, depending on µ, the set of values of λ for which the condition d) is
fulfilled can be empty.

6 The Lorentzian case

In this section we will consider the sphere endowed with a Berger metric gµ with µ < 0.
Then ‖V µ‖2 = −1 and it is a critical point of the energy restricted to unit timelike
vector fields.

Using the definition of the Sasaki metric in terms of horizontal and vertical lifts,
it is easy to see that gS

µ is a metric of index 2. The restriction of it to the bundle
of vectors of square −1, T−1S2m+1, has index 1. So (T−1S2m+1, gS

µ ) is a Lorentzian
manifold. These facts are true for any Lorentz manifold (M, g).

In contrast with the energy, that is defined for all vector fields, the volume of a
unit timelike vector field V will be defined only if V is an element of the open subset
consisting in the sections of T−1M such that V ∗gS is non degenerated.

Now, since gS is Lorentzian, this subset has exactly two connected components
corresponding to unit timelike vector fields for which V ∗gS is Riemannian and those
for which V ∗gS is Lorentzian. Variational calculus has to be done separately in each
component.

In particular, Hopf vector fields on Berger Lorentzian spheres induce Lorentzian
metrics (V µ)∗gS

µ on the sphere and V µ is critical for the volume restricted to the
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open set of unit timelike vector fields having this property, that we will denote by
Γ−(T−1S2m+1).

Using that, on a Lorentzian manifold, if V is a unit timelike vector field and
{V,Ei}2m

i=1 is an adapted orthonormal local frame then the vector fields Ei are spacelike
for all 1 ≤ i ≤ 2m and that all vector field X can be written as X = −g(X,V )V +∑

i g(X, Ei)Ei, we have

Proposition 6.1 ([12]). Let V be a unit timelike vetor field on the compact Lorentzian
manifold (M, g).
a) If V is a critical point of the energy, the Hessian of E at V acting on A ∈ V ⊥ is
given by

(HessE)V (A) = −
∫

M

‖A‖2ω(V,g)(V ) dvg +
∫

M

‖∇A‖2dvg.

b) For a unit timelike vector field V ∈ Γ−(T−1M) defining a minimal immersion, the
Hessian of F at V acting on A ∈ V ⊥ is given by

(HessF )V (A) = −
∫

M

‖A‖2ωV (V ) dvg +
∫

M

2√
detLV

σ2(KV ◦ ∇A)dvg

−
∫

M

tr
(
L−1

V ◦ (∇A)t ◦ ∇V ◦KV ◦ ∇A
)
dvg

+
∫

M

√
detLV tr

(
L−1

V ◦ (∇A)t ◦ ∇A
)
dvg.

In a similar way to that described in Proposition 4.1, we can show, by straightfor-
ward computation,

Proposition 6.2. Let V µ be the Hopf unit vector field on (S2m+1, gµ), where µ < 0,
for each vector field A orthogonal to V µ we have:

a) (HessE)V µ(A) =
∫

S2m+1

(
− 2mµ‖A‖2 + ‖∇µA‖2

)
dvµ.

b) (HessF )V µ(A) = (1− µ)m−2

∫

S2m+1

(
µ(2mµ + 2µ− 4m− 2)‖A‖2 + ‖∇µA‖2

+ µ‖∇µ
V µA−√−µJA‖2

)
dvµ.

Using these expressions to compute the Hessian in the direction of the vector fields
Aa, as in Lemma 5.2, we obtain

Lemma 6.3. Let V µ be the Hopf unit vector field on (S2m+1, gµ), with µ < 0. For
each a ∈ R2m+2, a 6= 0 we have:

a) (HessE)V µ(Aa) =
√−µm

m + 1
|a|2

(
(1− 2m)µ + 2 +

(µ− 1)2

µ

)
vol(S2m+1).

b) (HessF )V µ(Aa) = (1− µ)m−2

√−µm

m + 1
|a|2f(m,µ)vol(S2m+1).

where f(m,µ) =
(
(2m− 1)µ2 + (1− 4m)µ + 2 + (1− µ) (µ−1)2

µ

)
.

From here, an immediate consequence is the following
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Proposition 6.4. Let V µ be the Hopf unit vector field on (S2m+1, gµ), with µ < 0.
If (2m− 2)µ2 < 1, it is energy unstable and if (2− 2m)µ3 + (4m− 4)µ2 + µ < 1, then
it is volume unstable . In particular, on (S3, gµ) the Hopf vector field is unstable, for
all µ < 0.

The alternative expressions of the Hessian (see Proposition 4.4), used to show
stability results in the Riemannian case, can be extended without difficulties to include
negative values of µ.

Proposition 6.5. Let V µ be the Hopf unit vector field on (S2m+1, gµ), with µ < 0.
For each vector field A orthogonal to V µ we have:

a1) (HessE)V µ(A) =
∫

S2m+1

(
(2m + 2− µ(m2 + 4m− 1)) ‖A‖2

− ‖∇µ
V µA−m

√−µJA‖2 +
1
2
‖π ◦DCA‖2V ⊥

)
dvµ.

a2) (HessE)V µ(A) =
∫

S2m+1

(
(−2m− 2− µ(m2 − 1)) ‖A‖2

− ‖∇µ
V µA + m

√−µJA‖2 +
1
2
‖DC

A‖2V ⊥
)
dvµ.

b1) (HessF )V µ(A) = (1− µ)m−2

∫

S2m+1

(
f1(m, µ) ‖A‖2

− (1− µ) ‖∇µ
V µA−

√−µ(m− µ)
1− µ

JA‖2 +
1
2
‖π ◦DCA‖2V ⊥

)
dvµ.

b2) (HessF )V µ(A) = (1− µ)m−2

∫

S2m+1

(
f2(m, µ) ‖A‖2

− (1− µ) ‖∇µ
V µA +

√−µ(µ + m)
1− µ

JA‖2 +
1
2
‖DC

A‖2V ⊥
)
dvµ.

where

f1(m, µ) = µ(−1 + µ− 6m + 2mµ) + (2m + 2)− µ(m− µ)2

1− µ

and

f2(m,µ) = µ(1 + µ + 2mµ)− (2m + 2)(µ + 1)− µ(µ + m)2

1− µ
.

Nevertheless, the arguments used in Theorem 5.5 do not allow us to conclude and
thus the stability question is open.

All these facts led us to consider in [7] a new functional B̃, better adapted to the
Lorentzian situation, that we called the spacelike energy. It is defined on the manifold
of unit timelike vector fields and it is related to the energy by

B̃(X) = E(X)−
∫

S2m+1

(2m + 1
2

− ‖∇µ
XX‖2

)
dvµ.

Since the Hopf vector field is geodesic, B̃(V µ) = E(V µ) − 2m+1
2 vol(S2m+1, gµ) =

B(V µ). We have shown in [7] that it is also a critical point of the spacelike energy
but, in contrast to Proposition 6.4, for any odd-dimensional sphere, endowed with
a Lorentzian Berger metric, the Hopf vector field is stable as a critical point of the
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spacelike energy. The proof is obtained using part a1) of Proposition 6.5 and the fact
that

(HessB̃)V µ(A) =
∫

S2m+1
‖∇µ

AV µ +∇µ
V µA‖2dvµ + (HessE)V µ(A).

For the 3-dimensional sphere we can do better because, although the inequality
(3.2) fails on a Lorentzian manifold, we have shown in [7] that

B̃(X) ≥ 1
2

∫

S3
Ricµ(X, X)dvµ,

for all timelike unit vector fields, with equality if and only if h11 = h22 and h12 = −h21.
The Ricci tensor verifies Ricµ(X, X) ≥ −2µ = Ricµ(V µ, V µ) for all unit timelike
vector fields X, with equality if and only if X = V µ. Therefore, we have shown the
following

Proposition 6.6. On any Lorentzian Berger 3-sphere, the Hopf vector field is, up to
sign, the only minimizer of the spacelike energy.
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